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  A B S T R A C T

ecosystem services are the benefits people obtain from ecosystems, such as clean 

air, fresh water, and the pollination of crops. The aim of this literature review 

was to find empirical data illustrating the ways in which conservation land and 

conservation management activities affect ecosystem services. The widely-held 

belief that natural ecosystems—such as those found on conservation land in 

New Zealand—provide a range of ecosystem services is generally supported by 

the literature. International studies show that natural vegetation can decrease 

air pollution, regulate local air temperatures, improve water quality, reduce 

shallow soil erosion, and retain natural nutrient cycles. It can also be beneficial 

for pest control and pollination on agricultural land. Wetlands can improve water 

quality and can play a role in drought and flood mitigation. Seagrasses, saltmarsh 

vegetation, and mangroves can reduce the height and force of waves and play a 

role in flood protection. In addition, maintaining biodiversity preserves genetic 

libraries and future options for discoveries of valuable biological compounds. The 

few studies investigating the effects of conservation management activities on 

ecosystem services indicate that restoring vegetation can improve water quality 

and water storage functions, can reverse soil degradation on a local scale, and 

can restore plant-insect interactions. Additionally, removing some invasive plant 

species can increase water yield. Unfortunately, very few studies of ecosystem 

services have been conducted in New Zealand to date, and only some of the 

international results are likely to be applicable under New Zealand conditions. 

Accordingly, while conservation is probably beneficial for a range of ecosystem 

services in New Zealand, the scarcity of local data makes it difficult to ascertain 

where and when, and to what extent, the majority of those benefits transpire.

Keywords: ecosystem services, air, climate, water, soil, pest control, disease 

regulation, pollination, natural hazard protection, nutrient cycling, fish stocks, 

biodiversity, conservation management, natural habitat, restoration
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 1. Introduction to ecosystem 
services

ecosystems can be defined as dynamic collections of plants, animals, and 

microorganisms interacting with each other and their abiotic environment. 

ecosystem services are the benefits people obtain from ecosystems (Daily et al. 

1997a). These benefits (ecosystem services) are commonly classified as being 

one of four types: provisioning, regulating, cultural, or supporting (Table 1) 

(MA 2005). Human survival and well-being depends utterly on these ecosystem 

services, and thus on the health of the ecosystems that provide them (Daily 1997; 

Costanza et al. 1998).

In general, natural, intact ecosystems provide 

the best ecosystem services. The Department of 

Conservation (DOC) manages 30% of the land area 

in New Zealand, and most of this DOC-managed land 

consists of natural, intact ecosystems and habitat. 

Accordingly, there is great potential for this land, 

and DOC’s management of it, to be beneficial for 

ecosystem services in New Zealand. However, the 

ways in which conservation land and conservation 

management activities affect ecosystem services 

are not well understood or documented, so the 

characteristics of these benefits—and where they occur—are largely unknown. 

This literature review is the first step in addressing this information gap, with the 

primary aim being to find out exactly how much is known (in the empirical sense) 

about the impacts of conservation on ecosystem services. This information may 

also enable the development of a new focus for conservation advocacy in New 

Zealand: the idea that conservation is beneficial for New Zealanders because it 

provides ‘services’ such as clean water, fresh air, and productive soils. If DOC 

can show that the general public benefits from conservation in this way, it may 

gain wider public support for its work. This novel focus requires a high level 

of confidence that such statements are in fact true. This literature review aims 

to sort out myth from reality, and pinpoint exactly what can and cannot be 

proclaimed about the impacts of conservation on ecosystem services.

The review focuses largely on the ecosystem services that are most likely to be 

affected by conservation activities, but are least likely to be within the realms of 

general public awareness. Accordingly, the review covers a subset of regulating 

and supporting ecosystem services (Table 1): air quality, climate regulation, water 

quality, quantity and flow, soil fertility and stability, pest and disease regulation, 

pollination, natural hazard protection, and nutrient cycling. One provisioning 

service—fish stocks—was included in the review, since this is a major issue in 

the marine environment, and one that is potentially affected by DOC’s work in 

managing marine reserves. The harvest of exotic species such as deer and possums 

(Trichosurus vulpecula) could be considered another provisioning service that 

is potentially affected by the presence of conservation land. However, because 

one of the primary purposes of the review was to seek information that could be 

CATeGORy exAMPLeS

Provisioning Food, fibre, water, fuel, genetic resources

Regulating  Air quality, climate, water flow, pollination,
 erosion control, pest and disease control

Cultural  Spiritual, aesthetic, recreational, educational

Supporting  Photosynthesis, soil formation, nutrient cycling

TABLe 1.   eCOSySTeM SeRVICeS AS CLASSIFIeD By 

THe MILLeNIUM eCOSySTeM ASSeSSMeNT (MA 2005) .
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used for conservation advocacy purposes, we did not include services that were 

contrary to conservation goals. A section on biodiversity is also included because 

a large component of DOC’s role is the protection and management of biodiversity, 

and many scientists consider biodiversity to be an ecosystem service in itself. The 

review does not cover issues relating to carbon sequestration or climate change 

mitigation, since these topics are part of other DOC investigations currently 

underway. Terrestrial, freshwater, and marine ecosystems are all included in the 

review.

The ecosystem services included in this review span a vast topic range, and 

thus have an extensive literature. As a result, the list of search terms we used 

was lengthy (varying with the specific terminology associated with each 

ecosystem service). Because of this, the list is not included here. The search 

for relevant material was largely restricted to peer-reviewed published studies, 

although some ‘grey’ literature, where relevant and of sufficient quality, was 

also included. Particular emphasis was placed on locating New Zealand studies, 

but international evidence was also sought. New Zealand studies are identified 

as such in the text, but the country of origin for international studies is only 

identified when this is relevant. Most studies were located by using a range of 

search terms within the web-based database Google Scholar. Further relevant 

literature was frequently revealed by the references cited within these studies. 

Specific websites were searched in order to locate New Zealand studies; namely, 

those of Landcare Research, NIWA (National Institute of Water and Atmospheric 

Research), and DOC. A number of New Zealand scientists, both internal and 

external to DOC, were also consulted for advice on current research and relevant 

information for many of the topic areas. Additional information was found by 

conducting further, more general, web searches in Google. The literature search 

was largely completed by December 2008, although several papers published 

after this date were identified during the review process and the text was updated 

accordingly.

Two different scenarios were considered whilst searching the literature. Firstly, 

we looked for quantitiative evidence showing that intact, natural ecosystems  

(as found on conservation land in New Zealand) provide ecosystem services. 

In other words, we looked for evidence that conservation land is beneficial for 

ecosystem services simply because it exists in a relatively undisturbed state. 

Secondly, we looked for quantitative evidence showing that conservation activities 

other than land protection (such as pest control and habitat restoration) affect 

the provision of ecosystem services. (Hereafter, these are called conservation 

management activities.) Substantial, reliable evidence under either scenario 

could be used to demonstrate how the protection of conservation land and/or 

the management of that land can provide benefits to New Zealanders in the form 

of ecosystem services.
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 2. Air

 2 . 1  I N T R O D U C T I O N

Vegetation can improve air quality in a range of different ways, so there is 

potential for the forests and shrublands present on New Zealand conservation 

land to be beneficial in this respect. Conservation management activities might 

also affect air quality—albeit indirectly—if those activities impact on the ability of 

the vegetation to improve air quality in some way. For example, possum control 

might improve the condition of the canopy which, in turn, might improve the 

potential for pollutant interception. For this section we sought studies that 

quantify the ways in which vegetation affects air quality, and how and when it 

varies.

 2 . 2  P O L L U T I O N  R e D U C T I O N

There is widespread agreement in the literature that vegetation, especially trees, 

decreases air pollution concentrations both directly and indirectly. Plants absorb 

gaseous air pollutants mostly through stomata (pores) in their leaves. Airborne 

particles are physically intercepted and collect on plant surfaces (Nowak & 

Dwyer 2000). Some particles are then absorbed, but most are retained on plant 

surfaces and can be washed off by rain, dropped to the ground with leaves and 

twigs, or resuspended to the atmosphere (Nowak & Dwyer 2000). The degree 

of air pollution reduction varies depending on vegetation type, plant species, 

canopy extent, air pollutant characteristics, and local meteorological conditions 

(Fowler et al. 1999; Beckett et al. 2000; Nowak & Dwyer 2000; Freer-Smith  

et al. 2004). Computer simulations revealed that air pollution removal by trees in 

14 cities in the USA ranged from 19 to > 1500 tonnes per year (Nowak & Dwyer 

2000).

Air quality improvement by trees tends to increase as percentage tree cover 

increases (Nowak & Dwyer 2000; Jim & Chen 2008). In Guangzhou city in China, 

removal of sulphur dioxide, nitrous oxide and particulates by vegetation was 

estimated at 312.03 Megagrams per annum, with greater removal in areas with 

more trees (Jim & Chen 2008). In an effort to reduce air pollution for the 2008 

Olympic Games, Chinese officials planted millions of trees covering an area of 

approximately 682 ha—or twice the size of Central Park in New york (Dominion 

Post, 23 July 2008). However, even a small area of trees can dramatically reduce 

particulate air pollution. For example, one Russian study showed that more than 

50% of the dust from an open-cast coal mine was intercepted by a 15-m-wide 

stand of birch trees (Spitsyna & Skripal’shchikova 1991, cited in Beckett et al. 

1998). Although much of this literature assesses the effect of trees on air quality 

in urban areas, atmospheric pollution can be dispersed over wide areas (Beckett 

et al. 1998). Larger particles fall to earth more quickly than finer particles because 

they are heavier, so tend to be concentrated close to the source (Beckett et 

al. 1998). Finer particles not only have a much longer residence time in the 

atmosphere (Beckett et al. 1998), but also appear to pose the greatest health risks 

(Beckett et al. 2000; Fisher et al. 2002).
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Vegetation types vary in their effectiveness in removing air pollutants. Forests 

have the potential to remove larger amounts of air pollution than any other 

vegetation type (Fowler et al. 1999). Of all natural land cover classes, forests 

generate the greatest frictional drag and, consequently, turbulence at the earth’s 

surface (Fowler et al. 1999). Because forests are aerodynamically rough surfaces, 

their rate of turbulent exchange is larger than grasslands by an order of magnitude 

or more (Fowler et al. 1999). A study from europe found that forest vegetation 

removed significantly higher levels of sulphur and nitrogen pollutants from the 

air than moorland vegetation (Fowler et al. 1999). Trees also have a greater leaf 

area than other plant types, enabling greater pollutant uptake (Beckett et al. 

2000). 

Pollution capture efficiency can also vary among tree species. Species with a 

more complex stem structure and finer leaves are more effective at capturing 

particulate pollution (Beckett et al. 2000; Freer-Smith et al. 2004). Conifers are 

more effective at removing particulates than broadleaves, because they have 

more complex architecture and are usually evergreen (Beckett et al. 2000). 

evergreen trees can continue to remove pollutants from the air year round, while 

only some deciduous trees can continue to capture pollutants (through their 

stems) after leaf fall (Freer-Smith et al. 2004). Air pollution removal by vegetation 

in Beijing was lower in winter despite increased particulate concentrations from 

coal fires, because the majority of tree species in the city are deciduous (yang  

et al. 2005). Thus, New Zealand native trees, which are primarily evergreen, may 

be more effective at removing air pollutants than introduced deciduous trees. 

Large trees also remove more air pollutants than small trees (Nowak & Dwyer 

2000), which provides an additional reason to protect larger, older trees and 

old-growth forests.

Trees also decrease the temperature in urban areas through shading and 

evapotranspiration (loss of water through leaf pores and subsequent evaporation 

to the atmosphere), which limits the production of temperature-dependent 

pollutants such as volatile organic compounds (VOC) (Beckett et al. 1998; Akbari 

et al. 2001). The temperature in a typical city in the USA has been estimated to 

be approximately 2.5°C warmer than in nearby rural areas on a clear summer 

afternoon (Akbari et al. 2001). This difference is due to darker surface areas, 

which absorb heat, and less vegetation in cities (Akbari et al. 2001). It has also 

been estimated that 12% of air pollution problems in cities are attributable to the 

higher temperatures found there (Moll 1996, cited in Beckett et al. 1998). Using 

simulation methods, Taha (1996) predicted that a 6.25% increase in vegetation 

cover would cause a 2°C decrease in air temperature across the Los Angeles Basin 

and result in smog reduction of up to 20%.

Trees can also be a source of air pollution, through pollen (which can be a health 

hazard for those allergic to it) and biogenic volatile organic compounds (BVOCs) 

(Nowak & Dwyer 2000; yang et al. 2005). Chemical reactions between BVOCs and 

nitro oxides can form ozone and aerosol pollutants (yang et al. 2005). However, 

air pollution models that incorporate both pollutant capture and emissions by 

trees indicate that the overall effect of trees on air quality is generally beneficial 

(yang et al. 2005; Nowak 2006), although there are exceptions (e.g. Taha 1996). 

Thus, the beneficial effects from the removal of pollutants and the reduction in 

air temperature resulting from trees usually outweigh the emission of BVOCs, 

and trees improve overall air quality (Nowak & Dwyer 2000; yang et al. 2005).
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 2 . 3  S U M M A R y

International studies show that vegetation can reduce air pollution both 

directly, by intercepting and absorbing airborne particles and compounds, and 

indirectly, by decreasing temperature through shading and evapotranspiration, 

although the degree to which pollution is reduced can vary according to a range 

of factors. None of the studies referred to in this section were conducted in  

New Zealand, but the international data are likely to be generally applicable, since 

the characteristics of both pollution and vegetation in New Zealand are likely to 

be broadly comparable to those in other countries. However, it is difficult to 

assess the extent to which the vegetation on land managed by DOC might be 

affecting air pollution. Its role may be relatively minor, given that the largest 

blocks of conservation land, those with perhaps the most potential for removing 

air pollution, tend to be located far from the large cities where the majority of 

pollutants are produced. On the other hand, even small patches of vegetation 

can have a dramatic affect on air pollution, so small reserves of conservation land 

near cities may be beneficial to some extent. We found no studies that examined 

the effects of conservation management activities on air pollution. In summary, 

it is difficult to ascertain whether conservation land or conservation management 

activities affect air pollution in New Zealand.

 3. Climate

 3 . 1  I N T R O D U C T I O N

Vegetation can affect local climate in a range of different ways, so there is potential 

for the forests and shrublands present on conservation land to be having this 

sort of effect in New Zealand. Conservation management activities might also 

affect local climate if they impact on the ability of the vegetation to change 

climatic conditions in some way. For example, restoring forest to areas that have 

been cleared might reduce local temperatures through shading effects. For this 

section we sought studies that quantify the ways in which vegetation affects local 

climatic factors such as temperature and rainfall. We do not cover issues relating 

to carbon sequestration and global climate change, since these topics are part of 

other DOC investigations presently underway.

 3 . 2  A I R  T e M P e R A T U R e

It is widely recognised that trees can regulate local air temperatures through 

shelter, shading, and evapotranspiration (Beckett et al. 1998; Nowak & Dwyer 

2000; Akbari et al. 2001; yang et al. 2005; Jim & Chen 2008). Shade from trees 

can decrease air temperatures by reducing solar heating of dark surfaces below 

the canopy (Nowak & Dwyer 2000). Some of the solar energy absorbed by trees 

results in water loss through leaf pores, and subsequent evaporation to the 

atmosphere. This evapotranspiration also has a cooling effect, which occurs not 

only directly below the canopy but also in surrounding areas, as air movement 

rapidly disperses cooled air (Nowak & Dwyer 2000). The temperature in urban 
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areas is generally 2.5°C warmer than in nearby rural areas on a clear summer 

afternoon, partly because there is less vegetation in cities (Akbari et al. 2001). 

The combined cooling effects of trees may be able to reduce air temperatures 

by as much as 5°C (Akbari et al. 1992). Trees can also dramatically reduce wind 

speed, with larger areas of trees having a more widespread effect (Nowak & 

Dwyer 2000). In cold climates, the sheltering effect of trees can substantially 

reduce building heating requirements (Akbari et al. 2001). In warm climates, the 

impacts of windbreaks on cooling are fairly small compared with the benefits of 

shading (Akbari et al. 2001). 

 3 . 3  R A I N F A L L

Whether the presence of forest results in increased rainfall has long been debated. 

It is thought that the high evapotranspiration and aerodynamic ‘roughness’ of 

forests leads to increased atmospheric humidity and moisture convergence, and 

thus to higher probabilities of cloud formation and rainfall generation (Andre  

et al. 1989). However, in many studies there is little, if any, evidence that forests 

can increase rainfall (Bruijnzeel 2004). Interestingly, both observational studies 

and climate models suggest that deforestation can result in reduced rainfall, 

particularly for very large tropical basins, such as that of the Amazon (Shukla  

et al. 1990; Salati & Nobre 1991; Cutrim et al. 1995; McGuffie et al. 1995; Costa 

& Foley 2000; Lawton et al. 2001; Pielke Sr 2001; Silva Dias et al. 2002; Ray  

et al. 2006), although there is considerable disagreement on the magnitude and 

nature of the changes (Bruijnzeel 2004; Pielke et al. 2007). It is well established 

that changes in key land surface characteristics, such as albedo, roughness, 

and water-holding capacity, can lead to changes in climate (Pitman 2003 and 

references therein), but these changes are only seen on a very large scale, and 

may not be detectable in a country the size of New Zealand. Furthermore, the 

fact that weather in New Zealand is so strongly controlled by maritime influences 

also means it is unlikely that our forests increase rainfall (Rowe et al. 2002b). 

The same has been said for southeast Asia, where prevailing maritime climatic 

conditions mean that effects of land-cover change on rainfall can be expected to 

be less pronounced than those of changes in sea-surface temperatures (Koster  

et al. 2000; Bruijnzeel 2004).

 3 . 4  S U M M A R y

International studies show that vegetation can regulate local air temperature 

through shelter, shading and evapotranspiration. It is far less certain whether 

forests can increase rainfall except, perhaps, on a very large scale. None of 

the studies referred to in this section were conducted in New Zealand, but 

the international data are likely to be generally applicable, since the effects of 

vegetation on air temperature and rainfall in New Zealand are likely to be broadly 

similar (depending on scale) to those in other countries. In summary, forests on 

conservation land in New Zealand may be affecting local air temperature, but 

where, and to what extent, is uncertain. Any effects of vegetation on rainfall are 

probably minimal, given New Zealand’s small size and strong maritime influence. 

We found no studies that examined the effect of conservation management 

activities on air temperature or rainfall.
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 4. Water

 4 . 1  I N T R O D U C T I O N

Water quality, quantity (the amount of water that flows off the land), and the 

timing and rate of flow (often called flood and drought mitigation) can all be 

affected by a multitude of different aspects pertaining to the natural environment, 

so the potential for conservation land to affect water issues is wide-ranging and 

complex. The potential for conservation management activities to affect water 

issues is also large. For example, restoring or improving vegetation could affect 

both the quality of water and the rate at which it flows through the watershed—

and could also affect soil condition which, in turn, has additional affects on water 

quality and flow. For this section we sought studies that quantify factors affecting 

water quality, water quantity, and the timing and rate of water flow.

 4 . 2  W A T e R  q U A L I T y

 4.2.1 General effects of vegetation

The scientific literature is largely in agreement that terrestrial ecosystems with 

intact groundcover and root systems generally improve water quality within a 

catchment. Vegetation, microbes, and soils remove pollutants from overland flow 

and from groundwater by physically trapping water and sediments, adhering 

to contaminants, reducing water speed to enhance infiltration, biochemically 

transforming nutrients and contaminants, absorbing water and nutrients from 

the root zone, stabilising soils and eroding banks, and diluting contaminated 

water (Naiman & Decamps 1997; Rey 2003; Ludwig et al. 2005; Brauman et al. 

2007). In general, undisturbed natural vegetation provides the highest quality 

water, since this vegetation produces the least amount of sediment and the 

fewest pollutants (Wiersum 1984; Lenat & Crawford 1994; Cooper 1995; Sliva 

& Dudley Williams 2001). The classic example illustrating the importance of 

natural vegetation for water supply comes from New york city, where it was 

determined that protecting and restoring the Catskill Mountain forests (at a cost 

of more than a billion US dollars) would purify the city’s drinking water for a 

fraction of the price of a water filtration plant (Chichilnisky & Heal 1998). 

New Zealand studies comparing the impact of alternative land-uses on water 

quality generally report that native forest streams have lower exports of 

sediments and nutrients and higher visual clarity than pasture or pine forest 

streams (Graynoth 1979; Dons 1987; Harding & Winterbourn 1995; quinn  

et al. 1997; quinn & Stroud 2002; Davies-Colley & Wilcock 2004; Larned et al. 

2004). It has also been reported that water flowing from an ungrazed native 

tussock grassland catchment in New Zealand is of far higher quality than water 

flowing from pasture catchments (Buck et al. 2004). It should be noted, however, 

that even invasive, exotic plant species can improve water quality in some 

situations (Cooper & Cooke 1984; Lusby et al. 1998; Chambers et al. 1999).



13Science for Conservation 295

 4.2.2 Mangroves

Mangrove forests also play an important role in the purification of water, because 

of their ability to trap and retain sediments (Scoffin 1970; Parkinson et al. 1994; 

Furukawa et al. 1997; Victor et al. 2004), transform nutrients (particularly 

nitrogen) (Rivera-Monroy & Twilley 1996; Kristensen et al. 1998), and immobilise 

microbes and chemicals such as pesticides (Corredor & Morell 1994; MacFarlane 

et al. 2003; Alongi et al. 2005). In many parts of the world, effluent is discharged 

directly into mangroves in order to take advantage of nature’s ‘free’ wastewater 

treatment (Tam & Wong 1993; Wong et al. 1997; Chu et al. 2000; Meziane & 

Tsuchiya 2002; Boonsong et al. 2003). However, the ability of mangroves to 

receive sediments is limited, since trees are usually killed when the lenticels 

(spongy areas that act as pores) on their pneumatophores (aerial roots), prop 

roots, and young stems are buried (ewel et al. 1998; ellison 1999).

 4.2.3 Wetlands

It is also well demonstrated that wetlands have a high and long-term capacity for 

improving water quality. They are particularly efficient at removing nutrients 

from through-flowing water (Johnston et al. 1990; Johnston 1991; Zedler 2003; 

Hogan et al. 2004), largely via the processes of sedimentation, soil adsorption, 

denitrification (in the soil), and nutrient uptake by vegetation (Johnston et al. 

1990; Templer et al. 1998; Mitsch et al. 2001; Saunders & Kalff 2001; Verhoeven 

et al. 2006). Coastal wetlands and estuaries also play an important role in water 

quality regulation by capturing and filtering sediments and organic wastes in 

transit from inland regions to the ocean (Jansson et al. 1994; Merrill & Cornwell 

2000; Tappin 2002; Soetaert et al. 2006). In fact, wetlands are so reliable at 

removing suspended solids, phosphorus, and nitrogen from wastewater that 

they have been integrated into wastewater treatment plants in many countries, 

including New Zealand (Cooke et al. 1990; Brix 1994; Chagué-Goff et al. 1999b; 

Sundaravadivel & Vigneswaran 2001; yang et al. 2006). Unsurprisingly, this 

practice can be detrimental to the functioning of these wetland ecosystems 

(Cooke et al. 1990; Chagué-Goff et al. 1999a; qualls & Richardson 2000; Scheffer 

et al. 2001; Verhoeven et al. 2006). Artificially constructed wetlands are a well-

established technology for the treatment of wastewater all over the world 

(Bhamidimarri et al. 1991; García et al. 2004; Greenway 2005; Tanner et al. 

2005), and there are at least 80 projects already in place in New Zealand (Sukias 

& Tanner 2004). New Zealand wetlands also frequently receive nitrogen and 

phosphorus runoff from agricultural land (Cooke 1988; Cooke & Cooper 1988; 

Burns & Nguyen 2002; Matheson et al. 2003; Zaman et al. 2008).

The conversion of wetlands to agricultural land has had a significant negative 

impact on water quality and storage in most parts of the world, including 

New Zealand (Gosselink et al. 1990; Patrick 1994; Bernert et al. 1999; Brinson 

& Malvárez 2002). International research shows that restoring vegetation and 

hydrology in natural wetlands can improve both water purification and storage 

functions (Turner & Lewis 1997; Pfadenhauer & Grootjans 1999; Craft 2001; 

Bruland et al. 2003; Hansson et al. 2005; Meyer et al. 2008), but we were unable 

to find similar studies from New Zealand. Nevertheless, effects on water quality 

and storage are likely to be similar where natural wetlands are restored in  

New Zealand, providing that climatic factors and hydrological regimes are 

broadly comparable to those studied elsewhere (Chris Tanner, NIWA, Hamilton, 

pers. comm.). 
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 4.2.4 Riparian vegetation

Riparian zones (the areas of interface between waterways and the land) can 

have a significant effect on catchment hydrology (Smith 1992), so protection, 

retirement from grazing, and restoration of riparian vegetation may all improve 

water quality. It is well established that vegetation in the riparian zone can reduce 

bank erosion, slow surface flow, and filter out excess nutrients and sediment in 

the water (Vincent & Downes 1980; Lowrance et al. 1984; Cooper 1990; Smith 

1992; Naiman & Decamps 1997; McKergow et al. 2003; Marden et al. 2005; 

Croke & Hairsine 2006). 

Forested or retired pasture riparian strips can reduce nitrogen, phosphorus, and 

sediment in surface runoff from cropland and pasture (Peterjohn & Correll 1984; 

Smith 1989; Williamson et al. 1996). This is likely to be particularly important 

in New Zealand, where agriculture is the dominant land use in the middle and 

lower catchment areas of most streams and rivers (quinn 2000). Certainly, 

runoff from agricultural land is a major pollutant of New Zealand’s waterways 

(Hickey et al. 1989; Ryan 1991; Smith et al. 1993; Gillingham & Thorrold 2000; 

Vant 2001). Cooper & Cooke (1984) found that nitrate removal processes in 

two headwater catchments in New Zealand were particularly active where 

stream channels were vegetated with thick mats of the exotic grass species 

Glyceria fluitans. Another New Zealand study looking at the long-term effects 

of protecting riparian margins from pastoral farming found that stream nutrient 

concentrations declined significantly over the c. 30 years of protection (Howard-

Williams & Pickmere 2005). 

However, not all studies conclude that riparian planting improves water quality. 

A comparison of water quality in 75 catchment areas in the USA found that 

proximity of forested versus agricultural land to streams did not significantly 

affect stream nutrient levels (Omernik et al. 1981). In a New Zealand study of 

riparian afforestation with Pinus radiata, Smith (1992) found that water quality 

did not improve, but suggested that this might have been due to factors such 

as the lack of riparian wetlands, in-stream vegetation, and close riparian ground 

cover. Parkyn et al. (2003) reviewed nine riparian buffer zone planting schemes 

in New Zealand, and found that visual water clarity improved rapidly, but nutrient 

and faecal contamination responses were variable.

A myriad of interacting factors make it difficult to make general predictions about 

the effect of riparian planting on water quality. Watershed hydrology is perhaps 

the most important factor determining the effectiveness of riparian buffers for 

removing pollutants (Hill 1996); for example, removal of contaminants from 

surface runoff requires that runoff water be sufficiently slowed to allow sediment 

to settle (Dillaha et al. 1986; Haycock & Pinay 1993), or sufficiently deep to 

make contact with plant roots that take up pollutants or enable denitrification 

by bacteria (Correll et al. 1997). The width of the buffer also influences the 

extent to which pollutants are filtered out; Mayer et al. (2005) reviewed 14 

published reviews on buffer effectiveness and concluded that buffers between 

c. 10–50-m wide were particularly effective. Other important factors influencing 

buffer effectiveness include season, climate, soil characteristics, vegetation type 

and age, depth of root zone, buffer length, and location of the buffer in relation 

to the overall watershed (Devito et al. 1996; McGlynn & Seibert 2003; Mayer  

et al. 2005).
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 4.2.5 Marine ecosystems

Marine ecosystems also involve the transformation, detoxification and sequest-

ration of pollutants and societal wastes (Daily 1997). Seagrasses can reduce water 

flow, thereby enhancing sedimentation and improving water clarity (Fonseca & 

Cahalan 1992; Chen et al. 2007b; de Boer 2007), although these effects can vary 

over space and time (Koch et al. 2009) and even with species of seagrass (Koch 

et al. 2006). Marine microbes can detoxify anthropogenic pollution, including 

petroleum hydrocarbons from oil spills (Atlas 1981; Heath et al. 1997; Churchill  

et al. 1999; Roling et al. 2002). Phytoplankton can remove nitrogen, phosphorous, 

and other contaminants (including uranium from mining waste) from water 

(Hosetti & Frost 1998; Kalin et al. 2004), and seaweeds can perform a similar 

role (Troell et al. 1999; Lüning & Pang 2003). Oceanic hydrothermal systems are 

also important water quality regulators, removing about 50% of the pre-industrial 

dissolved phosphate from riverine sources (Wheat et al. 1996). Because shellfish 

filter water as they feed, they can remove excess levels of algae resulting from 

eutrophication, and thus improve water clarity (Daily 1997). Research done 

in Lake Tuakitoto in New Zealand showed that freshwater mussels (Hyridella 

menziesi) filtered a volume of water equal to that of the entire lake once every 

32 hours (Ogilvie & Mitchell 1995). The benthic bivalve fauna also appeared to be 

regulating phytoplankton levels in San Francisco Bay, as levels were much lower 

than would be predicted based on the large quantities of effluent discharged 

into the bay (Officer et al. 1982). Limiting environmentally detrimental coastal 

activities also has the potential to limit sewerage input to marine and freshwater 

environments, limit nutrient runoff, and reduce the likelihood of algal blooms.

To some extent, estuarine and marine ecosystems can render heavy metals 

biologically unavailable by binding them with sediments (Kersten & Forstner 

1986; Bryan & Langston 1992; yu et al. 2001). However, these pollutants are 

not necessarily transformed into harmless compounds by marine ecosystem 

processes, and can still place wildlife and humans at risk (van Straalen & ernst 

1991; Bryan & Langston 1992; Chen et al. 2000). For example, Wang et al. (1999) 

found that polychaete worms can assimilate 5–96% of heavy metals contained in 

ingested sediments. Seagrasses accumulate pollutants, including heavy metals 

such as lead, from the water column and sediments (Ward 1987; Hoven et al. 

1999), thus improving water quality (Turner & Schwarz 2006). However, heavy 

metal pollutants may be also be transferred higher up the food chain when 

seagrasses are consumed by other organisms (Ward et al. 1986; Barwick & 

Maher 2003; Marín-Guirao et al. 2005). Biomagnification of heavy metals, where 

concentrations are higher in predators than their prey, has been demonstrated 

for methylmercury (Bryan & Langston 1992; Gray 2002) and selenium copper 

(Barwick & Maher 2003).

 4 . 3  W A T e R  q U A N T I T y

 4.3.1 General effects of vegetation

The link between vegetation and the quantity of water flowing through a catchment 

is also well-studied and well-accepted. In most cases, empirical evidence 

shows that the total volume of surface and groundwater flowing from forested 

watersheds is lower than from grass- or shrub-dominated watersheds (Huang  

et al. 2003; Andréassian 2004; Brown et al. 2005). This is generally because large 
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plants intercept more water and also ‘lose’ more water to the atmosphere by 

evapotranspiration than small plants do (Wilcox & Thurow 2006). Vegetation age 

is also an important component; young plants tend to have greater transpiration 

rates than mature vegetation, and thus use more water (Bruijnzeel 1990). Forest 

type can also make a difference to water yield; for example, deciduous forests 

can differ from evergreen (Sahin & Hall 1996; Peel et al. 2001). 

Forest clearance certainly results in an increase in total water run-off (Ruprecht 

& Schofield 1989; Hornbeck et al. 1993; Sahin & Hall 1996; Fahey & Jackson 

1997; Bruijnzeel 2004; Farley et al. 2005; Nosetto et al. 2005). However, the net 

increase can vary depending on soil and underlying geological properties and the 

level of surface disturbance created (Gilmour et al. 1987; Smith 1992; Bruijnzeel 

2004; Brown et al. 2005; Farley et al. 2005). Afforestation in general reverses 

this effect after a number of years (Bosch & Hewlett 1982; Fahey & Jackson 

1997; Irvine et al. 2004; Farley et al. 2005), but the time taken to reach a new 

water-flow equilibrium can vary considerably (Hornbeck et al. 1993; Cornish & 

Vertessy 2001; Vertessy et al. 2001; Irvine et al. 2004).

 4.3.2 Atmospheric moisture

There is also good evidence that, in some situations, vegetation is capable of 

capturing atmospheric moisture from clouds or fog (Vogelmann 1973; Azevedo 

& Morgan 1974; Cavalier & Goldstein 1989; Becker 1999; Chang et al. 2002; Liu 

et al. 2004; Chang et al. 2006; Holwerda et al. 2006; Gomez-Peralta et al. 2008; 

Villegas et al. 2008). This is most commonly reported from cloud forest, except in 

New Zealand, where tussock grasslands have received the most attention (Mark 

& Holdsworth 1979; Campbell & Murray 1990; Holdsworth & Mark 1990; Fahey  

et al. 1996; Ingraham & Mark 2000). The idea that tussock grasslands play this role 

has been somewhat controversial within New Zealand, with considerable debate 

over the potential contribution to water yield of fog deposition versus reduced 

transpiration rates (Davie et al. 2006). Nevertheless, research shows that, when 

in good condition, tussock grasslands are particularly effective at maximising 

water yield—and, in many instances, are more effective than other vegetation 

cover types such as herbfields, exotic pasture grasslands and pine forests (Mark 

& Rowley 1976; Mark & Holdsworth 1979; Holdsworth & Mark 1990; Mark & 

Dickinson 2008). New Zealand studies also show that the conversion of tussock 

grassland to plantation pine tends to significantly reduce water yield (Fahey & 

Watson 1991; Fahey & Jackson 1997). 

These results suggest that conservation management activities designed to 

protect or improve the condition of these plants—by removing stock or 

controlling animal pests, for example—may improve water yield, but we found 

no studies investigating such links. A recent review paper emphasises the 

vital role that tussock grasslands play in regional hydrological regimes within  

New Zealand, and recommends that this be more widely acknowledged 

when water resource planning decisions are made (Mark & Dickinson 2008).  

For example, in a 2006 report to DOC, Butcher (n.d.) estimated that the water 

flowing from the tussock grasslands of Te Papanui Conservation Park was worth 

around $136 million to the people of Dunedin. A study from South Africa comparing 

biome type with the provision of ecosystem services found that grasslands were 

very important for all five ecosystem services considered, including both water 

supply and water flow regulation (egoh et al. 2009).
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 4.3.3 Effects of invasive plants

Some invasive plant species can reduce water yield; for example, Tamarix spp. 

in North America (Loope et al. 1988; Shafroth et al. 2005), pines and eucalypts 

in South Africa (Le Maitre et al. 2002; Görgens & van Wilgen 2004), and Miconia 

calvescens in Hawaii (Kaiser 2006) have all been shown to have this effect.  

In many cases, this impact can be explained by differences between the invasive 

and native species in transpiration rates, phenology, biomass of photosynthetic 

tissue, or rooting depth (Scott & Lesch 1997; Dyer & Rice 1999; Levine et al. 

2003). In some situations, removing the invasive plant species reverses this 

impact, and improves water yield (e.g. Neill 1983, cited in Vitousek 1992; Dye 

& Poulter 1995; Prinsloo & Scott 1999), but this is not always the case (Shafroth  

et al. 2005). International studies also show that invasive grass species can increase 

the incidence and severity of fire (D’Antonio & Vitousek 1992; Lippincott 2000; 

Douglas & O’Connor 2004) which, in turn, can increase water yield—often to the 

extent that flooding becomes a problem (Scott 1993; Robichaud 2000; Moody & 

Martin 2001a, b). Interestingly, a New Zealand study looking at the hydrological 

effects of burning tussock grasslands found the opposite effect: water yield 

decreased (Duncan & Thomas 2004).

 4 . 4  T I M I N G  A N D  R A T e  O F  W A T e R  F L O W  ( F L O O D  A N D 
D R O U G H T  M I T I G A T I O N )

 4.4.1 Forests

The link between forest cover and the timing and rate of water flow—often 

called flood and drought mitigation—is more variable. Although it is commonly 

assumed that forests act as ‘sponges’, absorbing water during storm events and 

gradually releasing it later, this is not necessarily true (Bruijnzeel 2004). Factors 

affecting the quantity and timing of water flow can vary according to a range 

of factors such as climate, soils, slope, vegetation type and age, the size of the 

watershed, and management practices (Cerda 1999). Additionally, the amount of 

water stored in the soil at any particular site depends upon soil depth, infiltration 

capacity, texture, structure and degree of previous saturation with water (Dunne 

et al. 1991; Franzluebbers 2002; Bryant et al. 2007). Forests influence some 

of these characteristics; for example, vegetation tends to enhance infiltration 

capacity (Hibbert 1971; McGuinness & Harrold 1971; Scott & Lesch 1997). 

Indeed, undisturbed forests are usually thought to be the best type of cover for 

reducing storm flow volumes, lowering peak flows and delaying peaks (Dudley 

& Stolton 2003). Deforestation tends to increase flood peaks and flood volumes 

(Andréassian 2004), but this effect is variable, and not always ameliorated by 

reforestation (Caruso 2006). Deforestation also tends to increase low flows, and 

reforestation tends to decrease low flows (Johnson 1998), but these effects can 

also be variable, and change over time (Andréassian 2004; Brown et al. 2005; 

Brauman et al. 2007). 

In a New Zealand study, Dons (1987) compared the hydrology and sediment 

regime of pasture, native, and pine forest catchments, and reported that the 

native forest catchment had the lowest stormflow yields, lowest peak flows, 

and highest low flows. These results lend support to the contention that natural 



18 McAlpine & Wotton—Ecosystem services literature review

forests play an important role in flood and drought mitigation; however, the 

author posits that some of the differences in hydrologic responses from the 

native forest catchment could be explained by drainage density and channel 

location, rather than vegetation differences (Dons 1987). It should also be noted 

that vegetation cover really only mitigates flooding during lower-intensity, short-

duration storm events; this effect is overridden in prolonged, high-intensity 

events (Bruijnzeel 2004). Also, while this protective effect may be significant in 

small watersheds with deep soils, it can diminish as the watershed size increases 

to river catchments and river basins (Bruijnzeel 1990).

 4.4.2 Wetlands

It is well recognised that wetlands can play an important role in flood and 

drought mitigation by storing storm runoff and slowly releasing water to streams 

and groundwater (Thibodeau & Ostro 1981; Ogawa & Male 1986; Walbridge 

1993; Abramovitz 1996; ewel 1997; Malmqvist & Rundle 2002; Brody et al. 2007; 

Ming et al. 2007). However, after reviewing 169 studies worldwide, Bullock & 

Acreman (2003) concluded that this is not always the case, and that sometimes 

wetlands have the opposite effect; a significant number of studies showed that 

some types of wetland actually increase flood peaks and/or reduce the flow of 

water in downstream rivers during dry periods. Studies from New Zealand also 

show that wetlands do not necessarily play a major role in flood or drought 

mitigation (Jackson 1987; Fahey et al. 1998; Bowden et al. 2001; Stewart et al. 

2007). Leibowitz (2003) suggests that the influence of wetlands in reducing flood 

peaks is greatest for small storm events occurring when wetlands have a large 

capacity for storage, and least for large floods when soil and wetland storage are 

saturated before the flood peak. 

Despite this potential for variation in the level of flood protection afforded by 

wetlands, the estimated economic value of this protection can be considerable. 

For example, Thibodeau & Ostro (1981) estimated that the loss of 8442 acres of 

wetlands within the Charles River system (Massachusetts) would result in annual 

flood damages of over US$17 million. A recent study from the USA reported that 

coastal wetlands are self-maintaining ‘horizontal levees’ that provide US$23.2 

billion worth of protection from hurricane-related flooding each year (Costanza  

et al. 2008). In New Zealand, the Whangamarino Wetland in Waikato was estimated 

to have saved NZ$5.2 million in flood control costs during a 100-year flood in 1998. 

Without the wetland storing the floodwaters on 12 July 1998, an extra 73 km2 of 

land adjoining the wetland would have been flooded (Waugh 2007).

 4 . 5  S U M M A R y

Conservation land and conservation management activities both affect water in a 

range of ways, but impacts can be highly variable, and not always beneficial for 

people. There is a large body of consistent evidence, including several studies 

from New Zealand, showing that the natural, largely undisturbed vegetation and 

healthy soils on conservation land are beneficial for water quality. Marine systems 

also involve the transformation, detoxification and sequestration of wastes, but 

we found no studies linking these processes to the protection of land or marine 

areas, or any conservation management activities. Most evidence shows that the 
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presence of vegetation in the riparian zone improves water quality, but data 

can be highly variable and often site-specific, so it is difficult to make general 

predictions about this link. 

There is good evidence showing that the quantity of water flowing off the land is 

affected by the vegetation present; in most cases, less water flows from forested 

watersheds than from grass- or shrub-dominated watersheds. Whether this is 

a positive or negative impact from a human perspective may depend on local 

water requirements and water resource planning goals. New Zealand studies 

show that tussock grasslands can be particularly effective at maximising water 

yield. evidence showing that forests and wetlands play a role in flood and drought 

mitigation is variable, and dependent on a range of site- and weather-related 

factors. In summary, the intact natural vegetation present on conservation land 

is certainly beneficial for water quality in New Zealand, and does affect water 

yield. It is more difficult to ascertain how that vegetation is likely to affect the 

timing and rate of water flow in New Zealand, since data are more variable, and 

often site-specific.

We found a range of studies that examined the effects of conservation management 

activities on water issues, but data were variable, and effects were not always 

beneficial. International studies show that restoring wetland vegetation can 

restore water purification and storage functions, and these results are likely to be 

applicable under New Zealand conditions. International and New Zealand studies 

show that riparian plantings can improve water quality, but this is not always 

the case. Similarly, international studies investigating whether the removal of 

invasive plants improves water quality and/or water yield report variable results. 

This limited evidence, with variable results, means that it is difficult to ascertain 

how conservation management activities affect water issues in New Zealand.
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 5. Soil

 5 . 1  I N T R O D U C T I O N

Soils, and the organisms within them, provide a range of interrelated ecosystem 

services, such as cleansing of water, detoxification of wastes, provision of 

substrate and nutrients to plants, and decay of organic matter (Daily et al. 

1997b; Sparling 1997; Wall & Virginia 2000). In fact, the majority of ecosystem 

processes, and thus ecosystem services, in both natural and managed ecosystems 

have the soil as the critical and dynamic regulatory centre (Barrios 2007). Despite 

this, knowledge of soil biodiversity and function is incomplete—in large part 

because the hugely abundant and diverse soil biota is difficult to identify and 

study, and difficult to link to soil function (Wall & Virginia 2000; Barrios 2007). 

Accordingly, this section is relatively narrow in focus, and is largely limited to the 

effects of natural vegetation and organisms characteristic of conservation land on 

soil stability and fertility. Conservation management activities might also affect 

soil stability and fertility. For example, controlling pest animals might improve 

the condition of the forest understorey which might, in turn, improve both soil 

stability (more roots binding the soil) and fertility (more leaf litter incorporated 

into the soil).

 5 . 2  S O I L  e R O S I O N

erosion by water and wind is the primary cause of soil degradation (Lal 1994). 

erosion adversely affects soil quality and productivity by reducing infiltration 

rates, water-holding capacity, nutrients, organic matter, soil biota, and soil depth 

(Morin & Van Winkel 1996; Belnap & Gillette 1998; Pimentel 1998). The widely-

held view that the presence of intact vegetation minimises these negative effects 

is largely supported by the scientific evidence (Meeuwig 1970; Wiersum 1984; 

Greenway 1987; Maass et al. 1988; Bruijnzeel 1990; Pimentel 1998; Durán Zuazo 

et al. 2004; Sidle et al. 2006). 

In general, undisturbed forest with its understorey, leaf litter, and organically 

enriched soil is the best vegetative cover for minimising soil erosion by water 

(Wiersum 1984), although other vegetation types can also play a significant role, 

even at low levels of cover (Loch 2000; Durán Zuazo et al. 2004; Durán Zuazo  

et al. 2006; Raya et al. 2006). The mechanisms by which this protection is afforded 

can be broadly classified as either hydrological or mechanistic in nature (Phillips 

et al. 2000). Hydrological factors that reduce surface water runoff, and hence 

reduce erosion, include interception of rainfall by foliage (Brandt 1988; Hall & 

Calder 1993) and transpiration of water from the soil (Islam & Weil 2000; Loch 

2000; Sánchez et al. 2002; Bruijnzeel 2004). Soils beneath undisturbed vegetation 

also tend to contain high levels of organic matter which, in turn, improve water-

holding capacity (Pritchett & Fisher 1979; Daily et al. 1997b). Vegetation reduces 

erosion mechanistically by way of root networks that ‘anchor’ the soil in place 

(O’Loughlin 1984; Watson et al. 1999; ekanayake & Phillips 2002; Sidle et al. 

2006). In many cases it is the presence of ground cover, rather than canopy, 
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that affords protection from erosion, so low-growing vegetation—or even a well-

developed litter layer—can also have a major effect (López-Bermúdez et al. 1998; 

Chomitz & Kumari 2001; Faucette et al. 2004). However, vegetative protection 

only reduces shallow landslides; forest cover has no influence on the occurrence 

of deep-seated mass movements, which are entirely controlled by geologic and 

climatic factors (Grant 1989; Bruijnzeel 1990).

There is good evidence showing that deforestation tends to promote soil erosion 

(Islam & Weil 2000; Sidle et al. 2006). Several studies from New Zealand have 

shown that landslides are far more likely to occur on deforested lands (Pain 

& Stephens 1990; Marden & Rowan 1993; Glade 2003; Dymond et al. 2006), 

although slope angle, storm rainfall, and soil strength also play a role (Dymond 

et al. 2006). An assessment of landslips in New Zealand during cyclone Bola 

(1988) showed that the incidence of landslips was 1% of the land area where 

forests older than 5 years were present, compared with 30% for cleared lands 

(Trustrum & Page 1992). Dymond et al. (2006) also showed that forest cover 

(both native and exotic) in New Zealand reduces landslide susceptibility by 

90%, and scrub cover reduces it by 80%. Heavy grazing and overgrazing can also 

promote soil erosion, largely because grazing reduces plant biomass and cover, 

and increases the amount of bare ground exposed (Takar et al. 1990; Villamil et al. 

2001; Fuhlendorf et al. 2002). Animals also have a direct effect on grasslands by 

trampling and compacting the soil surface, which can decrease water infiltration 

and thus increase runoff and soil erosion (Dunford 1949; Nguyen et al. 1998; 

Greenwood & McKenzie 2001). The extent to which exotic animals such as deer 

and goats affect surface soil erosion in New Zealand is largely unknown.

 5 . 3  S O I L  F e R T I L I T y

Soil fertility can be degraded by unsustainable practices such as deforestation, 

overgrazing and poor cultivation techniques (Compton & Boone 2000; Saviozzi 

et al. 2001; Villamil et al. 2001; Dupouey et al. 2002; Fuhlendorf et al. 2002). 

Deforestation tends to cause a loss in organic matter and nutrient stocks (Bormann 

et al. 1968; Morris & Moses 1987; Kutiel & Inbar 1993; Shakesby et al. 1993; 

Hajabbasi et al. 1997; Sahani & Behera 2001), particularly when followed by 

cultivation (Chidumayo & Kwibisa 2003). Ross et al. (1999) examined the effects 

of land-use change on soil nutrient pools and fluxes in New Zealand, and found 

that changes in total and microbial carbon and nitrogen pools were greatest 

after conversion of native forest to pasture. The same study also showed that 

net nitrification and phosphorus concentrations were lowest in the native forest 

soils, although many of the other parameters measured did not show consistent 

differences between land-use types (native forest, plantation pine, pasture) (Ross 

et al. 1999). The loss of soil carbon is of current interest in relation to atmospheric 

CO2 concentrations and global warming, since soils are the major global reservoir 

of terrestrial carbon (Post et al. 1982). Conversion from natural to agricultural 

ecosystems can deplete the soil organic carbon by 50% in approximately 5 years 

in the tropics, and 50 years in temperate regions (Lal 1999).

Dune systems and seagrass meadows also play a role in trapping sediments 

(acting as sediment reserves) and stabilising shorelines (Scoffin 1970). Seagrasses 

can reduce water flow, thereby enhancing sedimentation and reducing the  
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re-suspension of particles (Fonseca & Cahalan 1992; Terrados & Duarte 2000;  

de Boer 2007). The loss of seagrasses results in sediment erosion and subsequent 

erosion of the shoreline (Duarte 2000). In some cases, seagrasses also appear to 

play a role in dune formation when seagrass litter is deposited on land and acts 

as a sediment trap (Hemminga & Nieuwenhuize 1990). Sediment trapping has 

also been recorded for kelp forests, bryozoan meadows, and other macrophyte 

vegetation (de Boer 2007). Kelps reduce water flow beneath their canopy.

Sediment deposition rates are greater in these areas than in open areas, probably 

because particles are retained for longer periods beneath kelps (eckman et al. 

1989). After protection, an increase in the abundance of sea urchin predators 

(lobster and snapper) at Cape Rodney–Okakari Point Marine Reserve (sometimes 

called Leigh Marine Reserve) resulted in a shift from domination by sea urchins 

to domination by seaweed (Kelly et al. 2000; Shears & Babcock 2003; Willis  

et al. 2003a). This shift to seaweed dominance may have had a positive impact 

on water quality, if the seaweed reduced water flow and subsequently increased 

sediment deposition.

Fire tends to cause a loss in soil organic matter and nutrients (Stromgaard 1984; 

Kauffman et al. 1995; Chidumayo & Kwibisa 2003), and increases the likelihood 

of soil erosion (Morris & Moses 1987; Shakesby et al. 1993; Moody & Martin 

2001a; Williams 2001; Wondzell & King 2003). High-intensity fires, in particular, 

have a negative impact on the physical properties of soil which, in turn, affects 

other properties such as water infiltration rates (Neary et al. 1999; Kennard & 

Gholz 2001; Certini 2005). The work that DOC does to minimise fire risk, and 

fighting fires when they do occur, likely reduces these negative impacts, but 

there are no data to confirm this. 

Studies show that some weed invasions increase fire risk (D’Antonio & Vitousek 

1992; Lippincott 2000; Douglas & O’Connor 2004), so managing those weeds 

might indirectly benefit soil fertility. However, fire can also increase nutrient 

availability and thus improve seedling growth rates (Kennard & Gholz 2001), 

so may have positive effects on ecosystem services—in the short-term, at least 

(Neary et al. 1999; Wan et al. 2001). 

Soil biota are also likely to be drastically affected when forest is cleared or 

burnt because, like above-ground organisms, soil-dwelling species have habitat 

preferences, and disruption of their soil habitat changes the community 

composition (Freckman & Virginia 1989; Freckman & ettema 1993). However, 

soil biota remain poorly known and understood (Wall & Virginia 2000), so it is 

difficult to estimate the impacts of human-induced change and, therefore, the 

importance of retaining undisturbed tracts of land such as those managed by 

DOC.

 5 . 4  R e V e R S A L  O F  S O I L  D e G R A D A T I O N

International studies show that soil fertility and structure can improve significantly 

when previously cultivated sites are revegetated (either artificially, or by natural 

succession), although this can take many decades (Bormann et al. 1974; Burke 

et al. 1995; Fuhlendorf et al. 2002; Gong et al. 2006). even highly degraded 

soils, such as those in areas mined for bauxite, can be restored to near-natural 
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levels of litter accumulation, nutrient content, and decomposition rates (Grant 

et al. 2007). Restoring vegetation also re-sequesters depleted soil organic carbon, 

although the rate can be slow, or even negative, during the first few decades of 

recovery (Paul et al. 2002; Vesterdal et al. 2002; Chen et al. 2007a). The rate at 

which soil carbon is accumulated can also vary according to the productivity of 

the recovering vegetation, the physical and biological conditions in the soil, and 

past land-use history (Lal 1999; Post & Kwon 2000; Silver et al. 2000, 2004; Resh 

et al. 2002). Studies from New Zealand and Australia show that retirement from 

grazing also enables soil recovery, although this too tends to be a slow process 

(Braunack & Walker 1985; McIntosh et al. 1994; Basher & Lynn 1996). Two  

New Zealand studies showed that excluding grazing animals had only small 

effects on soils, even 16 years after removal (McIntosh et al. 1997; McIntosh & 

Allen 1998). There is also evidence from a study done in Colombia that restoring 

vegetation can slow soil erosion to near natural levels (Vanacker et al. 2007).

 5 . 5  S U M M A R y

There is good evidence from both New Zealand and international studies showing 

that the presence of intact vegetation minimises soil erosion by water and wind, 

so conservation land is undoubtably beneficial for both the stability and fertility of 

soil in New Zealand. Although limited in number, New Zealand and international 

studies also show that soil degradation can be reversed—albeit slowly—on a 

local scale by restoring vegetation and/or removing grazing stock.
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 6. Pest and disease regulation

 6 . 1  I N T R O D U C T I O N

This section deals with two broad aspects of pest and disease control in relation to 

conservation land and conservation management activities. The first is the control 

of invertebrate crop pests by their natural invertebrate enemies. These natural 

enemies might benefit from the resources and habitat provided by conservation 

land which, in turn, might result in improved control of the crop-damaging pests 

on adjacent agricultural land. Conservation management activities might also be 

beneficial in this respect, if those activities improve conditions for the natural 

enemies in some other way. For example, restoring or improving the condition 

of native vegetation might improve the availability of suitable habitat for the 

invertebrates that control crop pests. 

The second aspect dealt with in this section is the potential impact of conservation 

land and conservation management activities on animal-vectored human disease. 

If the natural habitat and organisms present on conservation land affect animal 

vectors in some way, they may also be affecting the prevalence and distribution 

of disease outbreaks in humans. For this section we sought studies that quantify 

the ways in which the natural habitat on conservation land and/or conservation 

management activities affect the natural enemies of agricultural pests, or affect 

the prevalence and distribution of the animal vectors of human disease.

 6 . 2  A G R I C U L T U R A L  P e S T S  A N D  T H e I R  N A T U R A L 
e N e M I e S

The availability of natural habitat can increase the abundance and diversity of 

the natural enemies of agricultural pests by providing food resources, shelter 

and nesting sites, and alternative parasite hosts (Landis et al. 2000). In a recent 

review of 26 international studies covering a wide range of cropping systems 

and arthropod groups, Kremen & Chaplin-Kramer (2007) found that, in all cases,  

at least some natural enemies of crop pests increased in abundance with increasing 

natural habitat or landscape complexity. Similarly, a meta-analysis of 62 taxa 

from 43 studies (none from New Zealand) demonstrated that natural enemy 

abundance increases with increasing habitat structural complexity (Langellotto 

& Denno 2004). 

There are many other international studies that illustrate the benefits of natural 

or unmanaged habitat for pest control. For example, in managed apple orchards 

adjacent to woodlands in California, USA, predatory arthropod abundance and 

predator removal rates of experimental prey were greater on trees close to 

woodlands (native forest) than at the centre of orchards (Altieri & Schmidt 1986). 

Dambach (1948; cited in van emden 1965) found that woody vegetation in the 

field borders harboured many beneficial insects and relatively few pests, and found 

a lower proportion of crop pests hibernating in the litter of uncultivated field 

borders than in crop fields. In a UK study, the proportion of carnivorous insects 

increased with decreasing hedgerow management (van emden 1965). Abandoned 
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fields adjacent to canola crops were associated with increased mortality of pest 

beetles due to parasitism, and mortality increased with increasing size and age of 

old fields (Thies & Tscharntke 1999). Old, undisturbed habitat enabled parasitoid 

populations to build up and enhanced their dispersal into crop fields (Thies & 

Tscharntke 1999). Natural habitat may also have a positive effect on agricultural 

systems by interrupting the dispersal of crop diseases (Altieri 1999; Blua & 

Morgan 2003), but data appear to be limited. It should also be noted that, in many 

cases, natural habitat can benefit both crop pests and their natural enemies, so 

any effects on crop management may be neutral (van emden 1965).

It is unknown whether natural habitat is beneficial for the enemies of agricultural 

pests in New Zealand, since little relevant research has been conducted to 

date. Results from international studies may not apply under New Zealand 

conditions, since most crop pests originate from the northern hemisphere 

and are, therefore, more likely to be found on exotic, northern hemisphere 

vegetation than on native New Zealand vegetation (Nicholas Martin, Crop & 

Food Research, Auckland, pers. comm.). However, Lincoln University is leading 

a new research programme aimed at determining the attributes and value of 

ecosystem services in New Zealand’s arable, pastoral and horticultural sectors. 

Collaboration with Landcare Research and 45 Canterbury vineyards has resulted 

in the ‘Greening Waipara’ project, which will investigate whether native 

plants enhance pest control in New Zealand vineyards (Meurk et al. 2008).  

Part of this research includes a PhD study (Jean Tompkins, Lincoln University) 

that aims to identify the abundance and diversity of beneficial and pest 

invertebrates in native plantings and remnant native vegetation within the 

agricultural landscape, pasture, and vineyards. Initial findings indicate that 

New Zealand jasmine, Parsonsia capsularis, shows some promise in providing 

beneficial floral resources to natural enemies of vineyard pests (Meurk et al. 

2008). There have been several small studies that considered whether native 

habitat might be beneficial for a natural enemy (the parasite Proscissio cana) of 

one of New Zealand’s main pasture pests, the grass grub (Costelytra zelandica) 

(Given 1945; Thomas 1963; Merton 1980), but few data were recorded, results 

were inconclusive, and little further research has been done since. 

Several studies have examined the effect of exotic plants on beneficial parasitoids 

in New Zealand. One study showed increased rates of parasitism in wheat 

fields that were close to buckwheat floral resources (Tylianakis et al. 2004). 

The presence of flowering buckwheat also enhanced leafroller parasitism rates 

by more than 50% in one of two Marlborough vineyards studied (Berndt et al. 

2006). The vineyard where no effect was detected had been partially treated with 

pesticides and had much lower levels of aphids. In New Zealand apple orchards, 

leafroller parasitism levels increased and damage caused by leafrollers decreased 

when floral resources were enhanced using buckwheat and alyssum (Irvin et al. 

2006). However, these extra resources can also be beneficial for pest fitness; in 

the previous study, leafrollers had increased longevity and egg production in the 

presence of alyssum (Irvin et al. 2006).

Any effects of natural habitat on agricultural pest control also depend on dispersal 

of invertebrates between natural habitat and crop fields. Thiele (1964; cited in 

van emden 1965) found little movement of carabid beetles between hedgerows 

and adjacent crops. In a Swiss study, only 6% of common arthropod species were 

restricted to semi-natural habitats; most dispersed, to some extent, into cultivated 
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areas (Duelli & Obrist 2003). Some studies have shown that invertebrate natural 

enemies appear to have poorer dispersal abilities than invertebrate herbivores 

(Zabel & Tscharntke 1998; Kruess & Tscharntke 2000; Thies et al. 2005). Although 

densities of both cereal aphids and their parasitoids were positively correlated 

with percentage of uncultivated land, aphids were affected at landscape scales of 

1–6 km in diameter, while parasitoid densities responded at scales of 0.5–2 km, 

and thus appear to be more limited by dispersal (Thies et al. 2005). Zabel & 

Tscharntke (1998) also found evidence of dispersal limitation in insect predators, 

which were more affected by habitat isolation than herbivores. The New Zealand 

PhD study by Jean Tompkins (mentioned above) may include investigations into 

invertebrate dispersal between native remnants and agricultural habitat, and the 

effect of distance to native remnants on the natural control of vineyard pests.

Increases in natural enemy abundance and predation rates do not always result 

in improved pest control or crop yield (Gurr et al. 2000). Pests can compensate 

for decreasing densities by increasing reproduction or dispersal, with no 

overall reduction in the pest population (Kremen & Chaplin-Kramer 2007). For 

example, in a study done in Germany, Thies et al. (2005) found greater aphid 

mortality due to parasitism in complex landscapes containing a high proportion 

of semi-natural habitat than in simple landscapes with less semi-natural habitat. 

However, this was compensated for by higher levels of aphid colonisation in 

complex landscapes, resulting in similar aphid densities across landscapes (Thies 

et al. 2005). Rodenhouse et al. (1992) found that the presence of uncultivated 

corridors between soybean fields was correlated with more pest enemies and 

fewer crop pests, but this did not result in higher soybean yields (Rodenhouse 

et al. 1992). Conversely, Mols & Visser (2002) found a beneficial effect of 

insectivorous birds in reducing pest densities and increasing crop production in 

the Netherlands. Great tits (Parus major) had a small but significant effect on 

caterpillar damage to apples (proportion of damaged fruit reduced from 13.8% 

to 11.2%), and increased fruit yield significantly (from 4.7 kg to 7.8 kg of apples 

per tree) (Mols & Visser 2002).

 6 . 3  H U M A N  D I S e A S e

ecological degradation can drive a range of infectious disease outbreaks and 

can also modify the transmission of endemic infections (Patz et al. 2000). 

Approximately 61% of human diseases are zoonotic (transferred between animals 

and humans) in origin, and have a link to wildlife and domestic animals (Taylor 

et al. 2001), although most of these diseases and their vectors are not currently 

present in New Zealand. To date, there have been no confirmed cases of locally 

acquired human illness caused by an arbovirus (arthropod-borne virus) in  

New Zealand (Derraik & Maguire 2005). However, this will almost certainly occur 

in the future, since infected travellers regularly arrive in New Zealand (Derraik 

& Calisher 2004; Derraik 2006), and several known and potential mosquito 

vectors of arboviruses are already established in New Zealand (Derraik & Slaney 

2007). Additionally, new mosquito species are regularly intercepted at the  

New Zealand border, mostly in cargo on incoming ships and aircraft, so there is 

a high chance that new vectors—and new diseases—could become established 
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here in the future (Derraik 2004). This risk may be even greater if the likely 

rises in temperature, rainfall and humidity due to climate change extend the 

availability of breeding sites and enhance mosquito survival (Derraik 2006). 

There are a number of mosquito-borne pathogens that could become established 

in New Zealand, including Japanese encephalitis virus, Barmah Forest virus, Ross 

River virus (RRV) and West Nile Virus (Derraik & Slaney 2007). Ross River virus is 

perhaps the most likely to arrive and establish, since it is the most common agent 

of arboviral disease in Australia, and two of its known mosquito vectors are already 

established here (Derraik 2006). Additionally, possums and wallabies (Macropus 

spp.) could contribute to the spread of this virus throughout New Zealand, since 

they are both competent hosts of RRV (Boyd 2001; Old & Deane 2005; Derraik 

et al. 2007). The benefits of controlling these species may, therefore, expand to 

include human health in the future (Nye 2007).

Anthropogenic environmental changes, such as deforestation and agricultural 

development, often coincide with increases in the prevalence of mosquito-

borne diseases (Gratz 1999; Martens et al. 2000; Patz et al. 2000; Norris 2004), 

so the presence of large, intact ecosystems may help to slow the introduction 

and spread of these diseases (LoGuidice et al. 2003; Leisnham et al. 2004; Foley  

et al. 2007). It is possible that conservation land could help to slow the spread 

and abundance of exotic mosquitoes in New Zealand. Results from a recent, as-yet 

unpublished, study in New Zealand indicate that exotic mosquitoes may be more 

likely to establish in small, disturbed forest remnants, rather than large, intact 

forest blocks (Mary McIntyre, Otago University, Wellington, pers. comm.). Other 

studies have also shown that anthropogenic changes such as those described 

above favour exotic mosquitoes in New Zealand (Leisnham et al. 2004; Leisnham 

et al. 2005; Derraik & Slaney 2007). On the other hand, exotic mosquitoes do live 

and breed in native forest in New Zealand (Derraik 2005; Derraik et al. 2005), so 

conservation land may in fact be beneficial for them. Current research into the 

distribution and habitat requirements of exotic mosquitoes in New Zealand (Mary 

McIntyre, Otago University, Wellington) may help to improve our understanding 

of the impacts of conservation land on exotic mosquitoes. 

 6 . 4  S U M M A R y

International studies show that the control of agricultural pests by their natural 

enemies is often enhanced by the close proximity of natural habitat, but there 

is insufficient evidence to assess whether this may also be true in New Zealand. 

However, further information may be forthcoming in the next few years, since 

several New Zealand studies are currently underway. In the meantime, it is 

unknown whether the natural habitat on conservation land is beneficial for 

natural pest control on agricultural land. We were unable to find any studies 

that examined the affect of conservation management activities on crop pest 

control.
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It is also uncertain whether conservation land might affect the prevalence 

and spread of human disease in New Zealand, if vector-borne diseases were 

to become established here. International studies indicate a greater risk from 

mosquito-borne diseases in modified environments, but New Zealand data are 

lacking. Accordingly, it is unknown whether the presence of intact, undisturbed 

ecosystems on conservation land might help to minimise the introduction and 

spread of arboviral diseases in New Zealand.

 7. Pollination

 7 . 1  I N T R O D U C T I O N

Pollinating insects, and hence the pollination services they provide, might 

benefit from the native habitat present on conservation land. Conservation 

management activities might also have an impact on pollination services if those 

activities affect the resources available to pollinating insects. For example, deer 

and possum control could improve the condition of the native vegetation which, 

in turn, could improve the availability of floral resources for pollinating insects.  

For this section we sought studies that quantify the ways in which natural 

vegetation affects pollinating insects.

 7 . 2  P O L L I N A T O R  D e C L I N e S

There is a growing global awareness of the extent to which both agricultural 

systems and natural plant communities critically depend on pollination services 

(Buchmann & Nabhan 1996; Allen-Wardell et al. 1998; Kevan 1999; Klein  

et al. 2007). Unfortunately, a wide range of pollinating animals, including insects, 

mammals and birds, appear to be in decline all over the world (Thomas & Abery 

1995; Buchmann & Nabhan 1996; Nabhan 1996; Cox & elmqvist 2000; Maes & 

Van Dyck 2001; Şekercioğlu et al. 2004; Thomas et al. 2004; Biesmeijer et al. 

2006). These declines are having a negative impact on plant reproductive success 

and fruit production in both natural and agricultural systems (Allen-Wardell  

et al. 1998; Cunningham 2000; Klein 2003). International studies reveal that these 

declines, particularly for insects, are generally related to habitat loss and the use 

of herbicides and pesticides (Parker et al. 1987; Rathcke & Jules 1993; Kearns & 

Inouye 1997; Kearns et al. 1998; Kremen et al. 2002; Thomas et al. 2004; Goulson 

et al. 2005; Öckinger & Smith 2006; Fitzpatrick et al. 2007; Kremen & Chaplin-

Kramer 2007), and to a range of introduced pests and diseases (Kraus & Page 

1995; Scott Schneider et al. 2004).

Managed and feral populations of the honey bee, Apis mellifera, are declining 

markedly in many countries (Westrich et al. 1996; Allen-Wardell et al. 1998),  

a phenomenon termed Colony Collapse Disorder (CCD) (Mussen 2007). This is 

cause for great concern, given that the majority of agricultural and horticultural 

crops around the world rely on this species for pollination (Nabhan & Buchmann 
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1997; Klein et al. 2007). The cause of CCD remains largely unknown (Stokstad 

2007), although it is thought to be partially due to infestation by the Varroa mite 

(Martin 1998) and another, less well-known microbe, the Israeli Acute Paralysis 

Virus (Cox-Foster et al. 2007). 

Although CCD has not yet been observed in New Zealand, it is causing serious 

reductions in crop production around the world, and serious costs for farmers who 

are having to ‘buy in’ pollinating services (Watanabe 1994; Sumner & Boriss 2006; 

Kremen & Chaplin-Kramer 2007). Recent research attention has been focused on 

the role of native wild pollinators—which, in many cases, are not susceptible to 

honey bee-specific diseases and parasites—and how best to encourage and sustain 

populations on farmland (Cunningham et al. 2002; Kremen et al. 2002; Goulson 

2003; Klein 2003; Kremen et al. 2004; Morandin & Winston 2005; Greenleaf & 

Kremen 2006a, 2006b; Klein et al. 2007; Winfree et al. 2007b; Winfree et al. 2008). 

Research is also underway in New Zealand, due to growing concern about the 

potential impact of the varroa mite on crop pollination (Goodwin 2004; Foundation 

for Arable Research 2007; Howlett et al. n.d. b).

 7 . 3  P O L L I N A T I O N  I N  N e W  Z e A L A N D

In New Zealand, little is known about the role of both native and introduced 

pollinators in transferring pollen in crops or in the native environment (Craig et 

al. 2000; Brad Howlett, Crop & Food Research, Christchurch, pers. comm.). In 

other countries, introduced honey bees tend to be the most important pollinators 

of crops (Kearns & Inouye 1997; Newstrom & Robertson 2005). This is also 

largely the case in New Zealand (Donovan 1980), but there is growing evidence 

that New Zealand native insects also provide pollination services for a range of 

commercial crops and agriculturally beneficial plants. For example, native bees 

have been recorded visiting flowers of lucerne, sweet clover kiwifruit (Actinidia 

spp.), broccoli, squashes, courgettes, and onions, among others (Donovan 1980; 

Howlett et al. 2005). Native insects including Lasioglossum bees also visit flowers 

of carrot crops (Howlett & Walker n.d.). Native bees, flies, beetles, butterflies, 

bugs, thrips, lacewings, dragonflies, and spiders have been shown to be common 

onion flower visitors at six sites in Marlborough, Canterbury and Central Otago 

(Howlett et al. 2005). At two of the sites, native bee flower visits outnumbered 

visits by introduced honey bees (Howlett et al. 2005). Subsequent research has 

shown that a range of native bees and flies are effective pollinators of onion and 

Brassica flowers (Howlett & Teulon n.d.; Howlett et al. n.d. b). In a national 

survey of kiwifruit orchards, Macfarlane & Ferguson (1983) found over 150 

species of invertebrates visiting kiwifruit flowers, including native bees, flies, 

thrips, and beetles. Native bees have also been recorded visiting white clover 

and parsnip crops (Palmer-Jones et al. 1962; quinn 1984). 

There are fewer studies on insect visitation to native plants, but a recent 

summary of both published and unpublished data indicated that approximately 

three quarters of flower visits were made by native insects, with the remaining 

quarter made by exotic honey bees, bumble bees, and wasps (Kelly et al. 2006). 

Additionally, a review of the use of native New Zealand plants by honey bees 

concluded that honey bees collect pollen or nectar from 224 native plant taxa 

(Butz Huryn 1995).
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Certainly, there is evidence of pollination failure in native plants, both in  

New Zealand (Robertson et al. 1999; Montgomery et al. 2001; Anderson et al. 

2006) and elsewhere in the world (Burd 1994; ehrlen & eriksson 1995; Johnson 

& Bond 1997; Wagenius 2006). Most pollination systems tend to be generalised 

(Waser et al. 1996; Kearns & Inouye 1997), in that plants can be pollinated by 

a range of different pollinators. This is also largely the case in New Zealand 

(Godley 1979; Lloyd 1985), but there are examples of specialised pollination 

systems (Kelly et al. 2004). Insects are by far the most common pollinators in 

New Zealand, and even though there are native plants that are clearly adapted 

to bird pollination (such as Fuchsia spp., Sophora spp., and Phormium spp.), 

most are also visited by bees, butterflies, and moths (Godley 1979). Despite this, 

pollen-limitation appears to be frequent on the mainland, occurring in six out of 

seven bird-pollinated species studied to date (Ladley & Kelly 1996; McNutt 1998; 

Robertson et al. 1999; Montgomery et al. 2001; Anderson et al. 2006). Pollination 

limitation may be due to a scarcity of pollinating birds in many areas of the  

New Zealand mainland, so conservation management activities aimed at 

protecting and improving populations and habitats have the potential to improve 

this service. In a recent attempt to elucidate this link, Kelly et al. (2005) tested 

the effects of stoat (Mustela erminea) control on bellbird (Anthornis melanura) 

breeding success, and looked for subsequent effects on bellbird pollination 

of native mistletoes. Stoat control certainly led to an increase in bellbird nest 

survival and density, but the study did not detect any improvement in mistletoe 

pollination (Kelly et al. 2005). 

Conservation management activities have the potential to maintain plant-

pollinator interactions in another way: a recent study from Britain found that 

restoration of heathland vegetation led to the re-establishment of functional 

pollinator communities (Forup et al. 2008). Although not specifically looking at 

plant-pollinator relationships, several other studies from New Zealand and the 

USA have shown that insect-plant interactions can recover rapidly from habitat 

loss with restoration management (Gratton & Denno 2005; Watts et al. 2008).

 7 . 4  P R O x I M I T y  O F  N A T U R A L  H A B I T A T

A number of international studies show that the presence of natural and semi-

natural habitat near agricultural and horticultural systems can increase the 

abundance and diversity of pollinating insects, improve pollination services, and 

improve fruit production (e.g. Scott-Dupree & Winston 1987; Steffan-Dewenter 

& Tscharntke 1999; Duelli & Obrist 2003; De Marco & Coelho 2004; Kremen 

et al. 2004; Ricketts 2004; Balvanera et al. 2005; Blanche & Cunningham 2005; 

Blanche et al. 2006; Chacoff & Aizen 2006; Kleijn & van Langevelde 2006; Brosi 

et al. 2007; Goldman et al. 2007; Öckinger & Smith 2007; Kohler et al. 2008; 

Ricketts et al. 2008). The implications for pollinator services are evident: farms 

near natural habitats are likely to benefit from more diverse and sustainable 

communities of pollinators (Kremen et al. 2002). 

It is possible that the natural habitat on conservation land provides similar benefits 

to crop pollination services in New Zealand, depending on where it occurs in 

relation to agricultural land. One current study of pollination services across five 

New Zealand regions shows that the least intensively farmed region (Wanaka) 

had the highest proportion of native pollinators, and the greatest species richness 
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(Howlett et al. n.d. a). Another ongoing study suggests that insect pollinators 

(excluding honeybees) are consistently less abundant in pasture than around 

landscape features including water, pine hedgerows, gorse hedgerows, and 

gardens (Walker et al. n.d.). A current PhD study (Romina Rader, James Cook 

University, Australia) looking at pollinator assemblages associated with different 

land uses in New Zealand (natural vegetation, cropping, orcharding, pasture) may 

shed further light on this aspect. Interestingly, some international studies show 

an increase in pollinator abundance and/or diversity in, or near to, agriculture, 

possibly due to the mass floral resources and/or additional habitat heterogeneity 

provided in these areas (Westphal et al. 2003; Winfree et al. 2007a).

How close does natural habitat have to be to improve insect pollinator assemblages 

in farm or cropland? Kremen et al. (2004) found that crop pollination services 

provided by native bees in California, USA, strongly depended on the proportion 

of natural habitat within 1–2.5 km of the farm site. Kohler et al. (2008) found 

that remnant nature reserves and other artificially created flower-rich habitats 

do enhance biodiversity on nearby farmland, but only if they are within 150 m 

of the site. Kremen et al. (2004) also modelled area requirements, assuming 

farmers were to depend entirely on native bees for watermelon pollination, and 

estimated that their farms would need to be situated in areas containing more 

than 40% of natural habitat within a 2.4-km radius, or more than 30% within a 

1.2-km radius. 

In summary, while critical distances appear to vary widely, perhaps because 

of site-specific characteristics and varying life history traits of the pollinators 

(Steffan-Dewenter et al. 2002; Bilde & Topping 2004; Öckinger & Smith 2007), the 

presence of natural habitat does appear to improve pollinating insect abundance 

and diversity. Habitat ‘corridors’ that connect patches of similar habitat have also 

been shown to facilitate pollen transfer in fragmented landscapes (Tewksbury et 

al. 2002; Townsend & Levey 2005), so conservation land may also be beneficial 

in this way.

 7 . 5  S U M M A R y

International studies show that close proximity of natural habitat can increase 

the abundance and diversity of pollinating insects in agricultural and horticultural 

systems, and can improve pollination services and fruit production. It is unknown 

whether this is also the case in New Zealand, since little local research has been 

conducted to date. However, new research is underway (both in New Zealand 

and elsewhere) into the role of wild native pollinators and how populations of 

these can be encouraged and sustained on farmland. The many native insects that 

are known to visit agricultural crops in New Zealand may become increasingly 

important pollinators if honey bee populations decline significantly, as they are 

doing elsewhere in the world. In summary, it is uncertain whether conservation 

land is beneficial for pollination in New Zealand. We found no studies linking 

conservation management activities and pollination services.
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 8. Natural hazard protection

 8 . 1  I N T R O D U C T I O N

Natural hazards can be defined as any natural occurrences (such as earthquakes, 

tsunamis, and volcanic and geothermal activity) that adversely affect human life, 

property or other aspects of the environment. Protection from natural hazards 

can be provided by natural structures and organisms, so conservation land may 

be beneficial in this respect. In particular, this review considers protection 

from ocean-based hazards such as storm surges or tidal waves, since these are 

likely the most common type of natural hazard. Furthermore, it is these types of 

relatively minor hazards that might be mitigated by some aspect of conservation 

land or conservation management activities. For example, mangroves—whether 

naturally occurring or replanted—might protect coastal areas from flooding and 

erosion associated with storm surges. For this section we sought studies that 

quantify the ways in which natural aspects of the coastal environment provide 

protection from ocean-based natural hazards.

 8 . 2  C O A S T A L  H A Z A R D S

Coastal sand dunes play an important role in the mitigation of coastal hazards 

such as erosion and flooding (Wijetunge 2006; Houser et al. 2008; Mascarenhas 

& Jayakumar 2008). Human-induced disturbance, such as pedestrian trampling, 

offroad 4WD activity, and housing development can cause significant erosion 

of sand dunes (Hesp 2002 and references therein). Protecting sand dunes for 

conservation purposes may, therefore, prevent or reduce these impacts and 

potentially enhance natural hazard protection. Natural dune repair after storms 

is critically dependent on the presence of appropriate sand-trapping vegetation 

on the seaward face of the dune (Snyder & Boss 2002; Dahm et al. 2005; Feagin 

et al. 2005). While many exotic species have been used to stabilise dunes in  

New Zealand (e.g. marram grass, ice plant, kikuyu), experience has shown that 

native sand-binding species (e.g. spinifex and pingao (Desmoschoenus spiralis)) 

are more effective at repairing storm-damaged frontal dunes (Dahm et al. 2005). 

Thus, restoring and maintaining natural dune systems could well be beneficial 

for natural hazard protection, but we were unable to find any studies to confirm 

this.

Living marine biota can also play a valuable role in the protection of coastal 

regions from natural hazards. There is good evidence that seagrasses, saltmarsh 

vegetation, and mangroves play a key role in flood protection by dissipating wave 

energy and reducing erosion (Fonseca & Cahalan 1992; Moller & Spencer 2002; 

quartel et al. 2007), although these effects can be variable over both time and 

space (Mazda et al. 2006; Chen et al. 2007b; Koch et al. 2009). Recent analyses 

of the protective role that different types of coastal vegetation played in the 2004 

Indian Ocean tsunami indicate that areas covered by seagrass beds were less 

impacted than areas covered by other types of vegetation (Chatenoux & Peduzzi 

2007). Protection of human infrastructure from storm surges, tidal waves, and 
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floods is one of the most widely touted services provided by wetlands (Barbier 

1994; Mitsch & Gosselink 2000; Turner et al. 2000; Pethick 2002). This is largely 

because wetland vegetation decreases the rate at which water passes over land, 

thereby slowing the destructive forces of abnormal storm surges or floodwaters 

(Whigham et al. 1988; Johnston 1993; Koskiaho 2003). However, the presence of 

a wetland also indicates the extent of natural flooding, thereby indicating where 

human development should cease (ewel et al. 1998).

Despite the popular and widely held belief that mangroves provide protection 

from tsunamis, there is surprisingly little data available to test this hypothesis 

(Dahdouh-Guebas et al. 2006). Mangrove forests appear to provide protection 

from tsunamis in some circumstances—some models using realistic forest variables 

suggest a significant reduction in tsunami wave flow pressure for forests at least 

100 m in width (Alongi 2008). The magnitude of energy absorption depends 

on tree density, stem and root diameter, shore slope, bathymetry, spectral 

characteristics (height, period, etc.) of incident waves, and tidal stage upon 

entering the forest (Alongi 2008). 

Proximity to the tsunami epicentre will also determine the extent to which 

coastal vegetation plays a protective role. For example, the presence of coastal 

vegetation made no difference to the impact of the 2004 Indian Ocean tsunami 

in coastal areas close to the epicentre (Chatenoux & Peduzzi 2007), but in 

areas further from the epicentre, the energy of smaller waves appeared to be 

reduced by these natural barriers (Adger et al. 2005). The presence of intact 

mangrove forests also provided protection from the tsunami in Sri Lanka, 

reducing damage compared with areas that had degraded mangrove forests and 

areas lacking mangroves altogether (Dahdouh-Guebas et al. 2005). Pre- and post-

tsunami satellite image analyses of the Tamil Nadu coast in India also indicated 

that mangrove forests provided protection from tsunami damage (Danielsen  

et al. 2005), although this study has been criticised for not accounting for distance 

from the coast when comparing damage among villages (Dahdouh-Guebas  

et al. 2006; Kerr & Baird 2007). Re-analyses of the data gave mixed results, with 

one study reporting no relationship between human mortality and the extent 

of coastal forest when distance from shore and elevation were accounted for 

(Kerr et al. 2006), while another study confirmed the orginal findings (Vermaat 

& Thampanya 2006). Clearly, the degree to which coastal vegetation provides 

natural hazard protection is somewhat variable, and is dependant upon a range 

of different factors.

 8 . 3  S U M M A R y

There is good evidence from international studies that seagrasses, saltmarsh 

vegetation, wetlands, and mangroves can all play a key role in flood protection. 

Mangrove forests can also provide protection against tsunamis, but only under 

certain circumstances. Both statements are probably largely true for coastal areas 

anywhere in the world, but we found no studies from New Zealand. We also 

found no studies linking conservation management activities and natural hazard 

protection. Accordingly, it is difficult to ascertain whether conservation land or 

conservation management activities are beneficial for natural hazard protection 

in New Zealand.
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 9. Nutrient cycling

 9 . 1  I N T R O D U C T I O N

Nutrient cycling describes the movement within and between the various biotic 

and abiotic entities in which nutrients occur, and entails a balance of inputs 

(such as the weathering of rock, carbon and nitrogen fixation, and nutrient 

release from live and dead organisms) and outputs (such as soil erosion, leaching, 

and gaseous emissions through decomposition) (Begon et al. 2006). This supply 

of nutrients is required for life and all ecological services (Bolin et al. 1983), and 

thus provides substantial benefits to people (MA 2005). 

Much is known about soil development and nutrient cycling within natural 

ecosystems in New Zealand (e.g. New Zealand Soil Bureau 1968; Molloy 1988). 

It is also well established, both internationally and in New Zealand, that the 

destruction of natural forest causes soil fertility to decline (Williams & Haynes 

1990; Lumbanraja et al. 1998; Lemenih et al. 2005; Mainville et al. 2006). 

However, to explain the intricacies of this highly complex, variable area of 

science is beyond the purpose and scope of this literature review. Accordingly, 

for this section we focussed our search effort on locating nutrient cycling studies 

that compared natural systems with managed systems, and/or looked at the 

impacts of conservation management activities on nutrient cycling. examples 

of such activites could include anything that contributes to the restoration or 

maintenance of plant and animal populations that are known to affect nutrient 

cycles.

 9 . 2  D I S R U P T e D  N U T R I e N T  C y C L e S

Over the last two centuries, human activities have resulted in large-scale changes 

to all of the major nutrient cycles (Pham et al. 1996; Vitousek et al. 1997a; Falkowski 

et al. 2000; Smil 2000). Specifically, shifts in land use patterns, increasing rates of 

fertiliser application, and translocations of nutrients across ecosystem boundaries 

have dramatically changed the rate, pathways, and efficiency of nutrient cycling 

(Bolin & Cook 1983; MA 2005). For example, nitrogen inputs to the global 

nitrogen cycle have approximately doubled over the past 200 years (Vitousek  

et al. 1997a), largely through combustion of fossil fuels, the application of 

nitrogen fertiliser, and extensive use of nitrogen-fixing crops (MA 2005).

The contemporary phosphorus cycle is also out of balance. Unlike the other 

elements, natural mobilisation of phosphorus is slow. Human activities have 

intensified releases of phosphorus to the extent that the global mobilisation of 

the nutrient has roughly tripled compared with its natural flows (Smil 2000). This 

has been largely due to applications of inorganic fertilisers, but also to increased 

soil erosion and runoff from fields, recycling of crop residues and manures, 

and discharges of urban and industrial wastes (Smil 2000). This elevates the 

potential phosphorus run-off to freshwater ecosystems which, in turn, results in 

eutrophication (Bennett et al. 2001).
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The main human perturbation to the global sulphur cycle results from the burning 

of sulphur-containing coal and oil, and the smelting of sulphite ores (MA 2005). 

The global carbon cycle is also out of balance, mainly as a result of the burning 

of fossil fuels, but also because of the conversion of forests and grasslands to 

agricultural systems (Schimel 1995; Potter 1999). 

Deforestation causes major disruptions to all these cycles (Bormann et al. 

1968; Vitousek 1983; Fuller et al. 1987; Rasmussen 1998; Potter 1999; Lemenih  

et al. 2005), which suggests that the intact vegetation on conservation land is 

important for the maintenance of natural nutrient cycling processes. Studies 

from New Zealand (Goh & Phillips 1991; Ross et al. 1999) and elsewhere 

(e.g. Bormann et al. 1968; Covington 1981; Hajabbasi et al. 1997; Williams 

et al. 1997) show that deforestation can result in soil nutrient losses. There 

is also evidence that converting native forest to pine plantation or pasture in  

New Zealand can increase nutrient levels in streamwater (Neary et al. 1978; 

Cooper & Thomsen 1988; quinn & Stroud 2002). Levett et al. (1985) looked 

at litterfall and its macronutrient concentrations in native and exotic forests in 

New Zealand, but got variable results and few consistent differences between 

forest types. International studies show that if land protection enables natural 

recovery of previously degraded vegetation, nutrient cycling systems can be 

restored (Toky & Ramakrishnan 1983; Brown & Lugo 1990; Hughes et al. 1999; 

McDonald & Healey 2000; Craft 2001). Active replanting schemes may have the 

same effect, but we did not find any studies that measured this.

 9 . 3  R e S T O R I N G  S e A B I R D  P O P U L A T I O N S

The loss of animal populations can also cause disruptions to nutrient cycles. It has 

long been recognised that seabirds transport large amounts of nutrients from the 

sea to the land in their guano, feathers, carcasses, eggs, and food for their young 

(Leamy & Blakemore 1960; Mizutani & Wada 1988; Furness 1991; Anderson & 

Polis 1999). This has a major impact on soil fertility (and thus nutrient cycling) 

which, in turn, can affect a wide range of other organisms and ecosystems (Onuf 

et al. 1977; Mulder & Keall 2001; Markwell & Daugherty 2002; Harding et al. 

2004; Barrett et al. 2005; Hawke et al. 2005; Hawke & Holdaway 2005; Payne 

& Moore 2006; Mulder et al. in press). Accordingly, the loss of seabird colonies 

can result in dramatic reductions in the nutrient levels in soils (Hawke & Powell 

1995; Fukami et al. 2006), although the chemical signatures of former seabird 

inputs can remain evident in soil for decades to hundreds of years (Moors et al. 

1988; Mizutani et al. 1991; Hawke et al. 1999). 

It is likely that restoring seabird populations will increase soil nutrient 

concentrations, and thus restore natural rates of nutrient cycling, although there 

do not appear to be any published studies that attempt to quantify this effect. 

However, a PhD student (Holly Jones, yale University) is currently examining 

this very issue on islands around the world with various restoration histories, 

including Mana Island in New Zealand, where three species of burrowing seabirds 

have been reintroduced (Miskelly & Taylor 2004; Miskelly et al. in press). Jones 

expects to see an increase in soil fertility at sites where seabirds are being restored, 

but her preliminary results suggest that it is too early in the restoration process 

for any major effects to be evident (Holly Jones, yale University, Connecticut, 

pers. comm.).
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 9 . 4  e F F e C T S  O F  I N V A S I V e  S P e C I e S

Introduced predators can also affect soil nutrients, although not always directly. 

Rats consume eggs, chicks and adult seabirds, and have severely reduced or 

extinguished seabird populations and species throughout the world (Atkinson 

1985; Holdaway & Worthy 1994; Booth et al. 1996; Holdaway 1996; Worthy 

1998; Pierce 2002; Blackburn et al. 2004; Caut et al. 2008; Jones et al. 2008). 

Stoats and pigs also prey upon seabird eggs, chicks, and adults, and pigs destroy 

nesting sites (Cuthbert 2001). Flow-on ecosystem effects have recently been 

demonstrated; comparisons of offshore islands in New Zealand reveal that 

predation of seabirds by rats disrupts sea-to-land nutrient transportation which, 

in turn, has a range of effects on below-ground organisms and the ecosystem 

processes they drive (Fukami et al. 2006; Towns et al. 2009). Similarly, Maron  

et al. (2006) showed that fox predation on seabirds reduced the delivery of 

nutrient-rich guano to the land with consequent dramatic effects on plant 

communities. 

These examples suggest that the many pest eradications that DOC has carried 

out on islands to protect seabird populations may also be fortuitously restoring 

or improving natural rates of nutrient cycling. There is certainly good evidence, 

from New Zealand and elsewhere, showing that rat control or eradication can 

dramatically improve seabird breeding success (e.g. Pierce 2002; Imber et al. 

2003; Whitworth et al. 2005; Igual et al. 2006; Jones et al. 2006), so flow-on 

effects on nutrient cycling could be expected. A recent paper by Mulder et al.  

(in press) showed that rat eradication per se had no effect on a range of ecological 

attributes measured, including soil nutrient levels. The authors concluded that 

soil nutrient levels are unlikely to recover without seabird recolonisation. Holly 

Jones (mentioned above) will also examine the effects of rat eradication on soil 

nutrients as part of her PhD study.

Controlling exotic species may also have positive effects on soil nutrients in 

other ways. Pig rooting can accelerate leaching of a range of nutrients from leaf 

litter and soil (Singer et al. 1984), and introduced browsing mammals, such as 

goats and deer, can have a negative effect on some soil processes and organisms 

(Wardle et al. 2001). evidence from New Zealand and elsewhere shows that 

grazing tends to result in topsoil nutrient decline over time, although effects can 

be variable (Bauer et al. 1987; Milchunas & Lauenroth 1993; McIntosh et al. 1996; 

yong-Zhong et al. 2005). 

Controlling or removing the browsing animals might reverse these effects, but 

there appear to be few published studies that examine this aspect of animal 

control, particularly for natural habitats. Several New Zealand studies have looked 

at the effects on soil nutrients of removing sheep from unimproved and managed 

grasslands, but with variable results. For example, Basher & Lynn (1996) looked 

at soil characteristics in unimproved grassland plots where grazers and hares 

had been excluded for 45 years, and concluded that there were few consistent 

differences between the exclosures and the surrounding grazed area. Two other 

studies found that excluding sheep and rabbits in managed grasslands for 16 years 

had only small effects on soil nutrients (McIntosh et al. 1997; McIntosh & Allen 

1998). Coomes et al. (2003) suggest that removing deer will not necessarily lead to 

complete forest recovery in New Zealand, largely because deer browsing has the 

potential to fundamentally and irreversibly alter a wide range of forest processes. 
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Indeed, there are a whole range of reasons relating to multi-trophic interactions 

and site-specific characteristics that suggest that ecosystem recovery might not 

necessarily follow animal control in New Zealand (Coomes et al. 2006).

It is also well documented that invasive plant species can alter nutrient cycles in 

a range of different ways (Mack et al. 2001; ehrenfeld 2003; Allison & Vitousek 

2004; Ashton et al. 2005; Bellingham et al. 2005; Hawkes et al. 2005; Leary et al. 

2006; Drenovsky & Batten 2007; Van der Putten et al. 2007; Martin et al. in press; 

Peltzer et al. in press). 

Several international studies have found that controlling invasive plant species 

can begin to reverse these effects, although results and timeframes to recovery 

are variable. In a study of dune systems in Portugal, Marchante et al. (2009) 

found that soil chemical and microbial properties were beginning to recover 

four and a half years after the invasive tree species Acacia longifolia had been 

removed, although complete recovery was likely to be slow. yelenik et al. (2004) 

found little change in nitrogen cycling regimes in the year following clearance 

of the invasive tree species Acacia saligna in South Africa, whereas Haubensak 

& D’Antonio (2006) found that nitrogen availability returned to pre-invasion 

levels c.18 months after removal of invasive, nitrogen-fixing broom species in 

California. Findlay et al. (2003) studied the effect of Phragmites australis removal 

on marsh nutrient cycling in the northeast United States and got mixed results: 

in the first year, reed removal resulted in higher concentrations of ammonium, 

but lower denitrification potentials. Denitrification activity had ‘recovered’ by 

the second season following removal, but pore-water ammonium continued to 

accumulate (Findlay et al. 2003). In a study from england, Marrs & Lowday (1992) 

hypothesised that bracken control and heathland restoration would result in a 

return to naturally low soil nutrient levels, but they found no evidence to confirm 

this. There is a New Zealand study underway looking at the effects of removing 

the exotic heather Calluna vulgaris on below-ground properties, including 

nutrient stocks and availability (Duane Peltzer, Landcare Research).

 9 . 5  S U M M A R y

Conservation land is likely to be important for the maintenance of natural 

nutrient cycling processes, given what is known about the detrimental effects 

of human-induced disturbances for all of the major nutrient cycles. There is also 

evidence from international studies showing that reforestation through natural 

successional processes can restore degraded nutrient cycling systems. Restoring 

vegetation by replanting may have the same effect, but we could find no studies 

to confirm this. Conservation management activities that restore burrowing 

seabird populations are likely to have flow-on effects on nutrient cycling, but this 

has yet to be confirmed. It is uncertain what effects controlling invasive plants or 

animals will have on nutrient cycling in New Zealand. In summary, the presence 

of intact vegetation on conservation land is undoubtably important for the 

maintenance of natural nutrient cycles in New Zealand. It is unknown, however, 

how conservation management activities might affect nutrient cycling.
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 10. Fish stocks

 1 0 . 1  I N T R O D U C T I O N

The focus of this section is the effect of conservation activities on fish stocks. It is 

the only ‘provisioning’ ecosystem service covered by the literature review since, 

in most other cases in New Zealand, the natural resources managed by DOC are 

not harvested or extracted from the environment. The main conservation activity 

likely to be influencing fish stocks is the establishment of marine reserves, so 

for this section we sought studies that quantify the effects of marine reserves 

on fish stocks. These effects on fish stocks might originate inside the reserve 

where the fish are protected, but they may also ‘spill over’ into areas outside the 

reserve, where they then become a resource available to fishers. We also looked 

for evidence that conservation land and/or conservation management activities 

affect whitebait stocks.

 1 0 . 2  I M P A C T S  I N S I D e  M A R I N e  R e S e R V e S

The evidence that marine reserves can enhance commercial fish species’ density, 

size, and diversity within reserves is relatively consistent in international studies 

(Wantiez et al. 1997; edgar & Barrett 1999; McClanahan & Arthur 2001; Schroeter 

et al. 2001; Barrett et al. 2007; Guidetti et al. 2008) and New Zealand studies 

(Kelly et al. 2000; Davidson et al. 2002; Denny et al. 2003; Willis et al. 2003a). 

A recent review of 44 no-take marine reserves and four large-scale fisheries 

closures in countries other than New Zealand demonstrated that marine reserves 

enhance diversity of target and non-target species, with an average 23% increase 

in species richness (Worm et al. 2006). 

In a New Zealand study, Willis et al. (2003a) found that snapper density and 

egg production was greater inside three marine reserves (Cape Rodney–Okakari 

Point, Te Whanganui-a-Hei (Cathedral Cove), and Tawharanui Marine Park) than 

in non-reserve areas. It has also been shown that snapper are bigger and more 

abundant in the Poor Knights Islands Marine Reserve than they are outside the 

reserve (Denny et al. 2003). Similarly, crayfish increased in abundance, size and 

egg production inside Tonga Island Marine Reserve (Davidson et al. 2002) and 

four marine reserves in north-eastern New Zealand compared with nearby areas 

outside reserves (Kelly et al. 2000). A number of other New Zealand studies have 

attempted to ascertain the effects of marine reserves on fish stocks, but results were 

inconclusive because of design limitations or illegal fishing (Pande 2001; Kelly  

et al. 2002; Davidson & Richards 2005; Shears & Usmar 2006a, b)

 1 0 . 3  I M P A C T S  O U T S I D e  M A R I N e  R e S e R V e S

The contribution of ‘no take’ marine reserves to fisheries management is a 

contentious issue, and evidence is more limited and variable. The review by 

Worm et al. (2006) showed that increases in biodiversity inside reserves were 
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also associated with a fourfold increase in catch per unit of effort in fished areas 

around the reserves. Other researchers argue that there are, in fact, relatively 

few robust data to support the claim that marine reserves are an effective way 

to achieve sustainable fisheries (e.g. Roberts et al. 2005). Gell & Roberts (2003) 

report that poor study design has fuelled the debate. For example, common 

design flaws include poorly located experimental control sites, inadequate 

replication, non-random placement of reserves, and a lack of data prior to reserve 

establishment (Gell & Roberts 2003; Willis et al. 2003b). 

A few relatively well-designed international studies show a beneficial effect of 

marine reserves on local fisheries (Roberts et al. 2001; Russ et al. 2004; Abesamis 

& Russ 2005), but this effect has yet to be demonstrated in New Zealand. Recent 

research by Guidetti et al. (2008) indicates that marine reserve enforcement is 

an important factor influencing the effectiveness of marine reserves as a fisheries 

management tool.

 1 0 . 4  W H I T e B A I T

The annual upstream migration of whitebait creates an important recreational 

and commercial fishery in New Zealand. This whitebait catch is made up of 

five species of juvenile diadromous (migratory between fresh and salt waters) 

galaxiids: inanga (Galaxias maculatus), koaru (Galaxias brevipinnis), banded 

kokopu (Galaxias fasciatus), giant kokopu (Galaxias argenteus), and shortjaw 

kokopu (Galaxias postvectis) (McDowell 1990). The whitebait fishery has 

probably been in decline since the early 1900s (McDowell 1984), with major 

contributing factors being the destruction of habitat, barriers to migration and 

competition with introduced species (Hanchet 1990; McDowell 1990; Minns 

1990; Townsend & Crowl 1991) (all studies included in this section are from 

New Zealand). DOC is involved in management of the whitebait fishery, and 

conservation of the five galaxiid species that make up the catch, so there is much 

potential for both conservation land and conservation management activities to 

be beneficial for whitebait stocks. 

Studies have shown that vegetative cover plays an extremely important role in 

providing habitat for adult galaxiids (Bonnett & Sykes 2002; Richardson 2002), 

so the intact riparian vegetation on conservation land is likely to be important. 

However, we were unable to find studies that compare the effects of native and 

non-native vegetation types on galaxiid abundance, so it is difficult to know 

whether native is best. Additionally, it has been suggested that vegetation 

structure, rather than species, is the most important factor influencing galaxiid 

spawning, and that most types of dense vegetation that provide moist, even 

temperatures at ground level are likely to be suitable (Mike Hickford, University 

of Canterbury, Christchurch, pers. comm.). 

Water pollution and, in particular, turbidity (murkiness) from silt and clay 

erosion, is another issue that can have a negative effect on galaxiids (Rowe  

et al. 2000; Richardson et al. 2001), although some species are more tolerant of 

turbidity than others (Boubée et al. 1997; Rowe & Dean 1998). In New Zealand, 

agriculture and urbanisation are major contributors to increased turbidity as a 

result of the suspended solids load that occur in many waterways (Ryan 1991), so 
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it could be expected that galaxiids would be more common in undeveloped areas 

on conservation land, and less common in developed areas. However, although 

some galaxiid species tend to be most abundant in the relatively pristine streams 

that originate in native forest (Hanchet 1990; Swales & West 1991), others are 

now commonly found in streams that drain exotic forest and even pasture (Minns 

1990; Jowett et al. 1996; Rowe et al. 1999; Rowe et al. 2002a).

Conservation management activities such as riparian restoration and protection 

from stock probably improve the availability and quality of galaxiid habitat 

(Charteris et al. 2003), although evidence to date appears to be limited and 

variable. eikaas et al. (2005) found that koaro occurred more frequently in  

New Zealand catchments with higher proportions of riparian forest cover, 

although this effect was only seen where the dominant position of non-riparian 

forest was in the upper (rather than the lower) part of the catchment. Rowe 

et al. (2002a) looked at the effects of pine forest logging, with and without a 

riparian buffer strip, on the native fish fauna (including banded kokopu). Banded 

kokopu were more abundant at logged sites with riparian buffers than they were 

at logged sites without riparian buffers, but they were also more abundant at 

logged pine sites than they were at native forest sites (Rowe et al. 2002a). 

In a small study, Mitchell (1994) showed that fencing off a single inanga spawning 

site resulted in an initial increase in spawning in the following two seasons, then 

a gradual decline as exotic grasses grew into a dense sward in the absence of 

grazers. However, the fenced site was not compared with adjacent non-fenced 

control sites, so it is possible that these changes were simply due to natural 

fluctuations in the general inanga population. There is new experimental research 

underway investigating the effects of fencing off and restoring riparian vegetation 

on inanga spawning (Mike Hickford, University of Canterbury, Christchurch, 

pers. comm.) that should add considerably to current knowledge. It has also 

been noted that mice (Baker 2006) and exotic slugs (Mitchell et al. 1992) prey 

upon inanga eggs, so controlling or excluding such predators could be beneficial 

to inanga spawning success. However, soon to be published research suggests 

that unless predator denisites are very high, predation is not the most important 

factor in determining spawning success and egg survival (Mike Hickford, 

University of Canterbury, Christchurch, pers. comm.). In summary, there are not 

yet sufficient data to assess how conservation land or conservation management 

activities affect galaxiid stocks in New Zealand, but new information is likely to 

be available in the near future.

 1 0 . 5  S U M M A R y

There is good evidence, from both from international and New Zealand studies, 

that marine reserves can enhance commercial fish species’ density, size and 

diversity within reserves. Studies showing that this also results in similar gains 

outside reserves are fewer in number, and more variable in conclusions reached. 

Accordingly, it is difficult to ascertain whether marine reserves are beneficial 

for harvestable fish stocks. We found no studies that investigated the effects of 

conservation management activities on marine fish stocks. Conservation land 

and conservation management activities could both be beneficial for whitebait 

stocks, but quantitative data are currently limited.
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 11. Biodiversity

 1 1 . 1  I N T R O D U C T I O N

Biodiversity—the diversity of genes, populations, species, communities, and 

ecosystems—is fundamental to universal ecosystem functions such as the 

absorption and transfer of energy and the uptake and loss of carbon dioxide, 

water, and nutrients (Woodward 1993; MA 2005) which, in turn, deliver 

ecosystem services. Many scientists argue that biodiversity is an ecosystem 

service in itself, although this remains difficult to argue from an empirical basis, 

since knowledge of the links between biodiversity and ecosystem function is 

incomplete (Loreau et al. 2001; Hooper et al. 2005; Kremen & Ostfeld 2005; 

Balvanera et al. 2006; egoh et al. 2009; Luck et al. 2009). Nevertheless, the 

Millenium ecosystem Assessment (MA 2005) states with ‘high certainty’ that 

biodiversity strongly influences the provision of ecosystem services, and cites 

pollination, seed dispersal, climate regulation, carbon sequestration, agricultural 

pest and disease control, and human health regulation as the processes most 

frequently affected by changes in biodiversity. Also, by affecting ecosystem 

processes such as primary production, nutrient and water cycling, and soil 

formation and retention, biodiversity indirectly supports the production of 

food, fibre, potable water, shelter and medicines (MA 2005). Thus, as the lead 

agency tasked with the protection and management of native biodiversity in  

New Zealand, DOC could be having significant indirect effects on ecosystem 

services. For this section, we sought studies that link some aspect of biodiversity; 

for example, species or functional diversity, with ecosystem services.

 1 1 . 2  S P e C I e S  D I V e R S I T y

Recent research shows an apparent link between biodiversity (defined as species 

diversity for this section) and ecosystem functions and services. For example,  

a recent global-scale study relating benthic biodiversity to indicators of ecosystem 

functioning and efficiency at 116 deep-sea sites found that deep-sea ecosystem 

functioning was exponentially related to species diversity (Danovaro et al. 

2008). Similarly, Naeem et al. (1995) showed that experimentally manipulating 

species diversity in artificial systems produced communities that differed in their 

ecosystem processes. In an example from a terrestrial system, Kremen et al. 

(2002) found that a diverse set of pollinators was necessary for sufficient crop 

pollination, because of year-to-year variation in community composition; relatively 

unimportant species in one year became crucial functional dominants in the 

next year. Meta-analyses of 32 local-scale experiments in the marine environment 

showed that increased biodiversity enhanced primary and secondary production, 

resource use, nutrient cycling, and ecosystem stability (Worm et al. 2006). 

Primary production can also decrease with declining biodiversity in terrestrial 

ecosystems (Tilman et al. 2001). Correlations of long-term trends in coastal 

and estuarine ecosystems in 12 regions in europe, North America and Australia 

showed increased stability in systems with higher diversity, with lower rates 
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of collapse and extinction of commercial species (Worm et al. 2006). Regional 

biodiversity losses were also associated with a reduction in a range of ecosystem 

services including viable fisheries, provision of nursery habitats, and filtering 

and detoxification by suspension feeders, submerged vegetation, and wetlands 

(Worm et al. 2006). The loss of ecosystem services with decreasing diversity 

was reflected in increased beach closures, toxic algal blooms, fish kills, shellfish 

closures, eutrophication, coastal flooding and species invasions (Worm et al. 

2006). Likewise, data from global fisheries showed that species-poor ecosystems 

had more frequent fisheries collapses, lower average catches, and reduced 

recovery rates compared with species-rich ecosystems (Worm et al. 2006). 

Conversely, two other reviews concluded that high species richness does not 

necessarily contribute significantly to ecosystem stability or function (Schwartz  

et al. 2000; Thompson & Starzomski 2007). This might be because the relationship 

between biodiversity and ecosystem function is likely to be inconsistent across 

scales and systems (Thompson & Starzomski 2007). Another explanation could 

be that many communities are dominated by a few species that provide the vast 

majority of the biomass (Schwartz et al. 2000).

Several recent studies have considered the extent to which hotspots of biodiversity 

overlap spatially with hotspots of ecosystem services. In South Africa, a study 

comparing biome type with the provision of five ecosystem services found a 

positive, although generally low, correlation between ecosystem services hotspots 

and species richness and vegetation diversity hotspots (egoh et al. 2009). Chan  

et al. (2006) evaluated the spatial correspondence of biodiversity and the provision 

of seven ecosystem services in California, and found a generally low correlation 

and a moderate overlap. Nelson et al. (2009) used a modelling approach to 

predict the provision of ecosystem services and biodiversity conservation under 

three different land-use policy scenarios: current policies remain, policies 

change to allow more land development, and policies change to encourage 

ecosystem protection and restoration (conservation scenario). They found that 

the conservation scenario produced the largest gains (or the smallest losses) in 

ecosystem services, and that scenarios that enhanced biodiversity conservation 

also enhanced the production of ecosystem services (Nelson et al. 2009). 

In general, it seems that the relationship between biodiversity and the provision 

of ecosystem services is generally positive, but the evidence is variable. Thus,  

it remains unclear how ecosystem services relate to different aspects of 

biodiversity, and whether the conservation of biodiversity will also ensure the 

provision of ecosystem services.

 1 1 . 3  F U N C T I O N A L  D I V e R S I T y

An alternative, but not necessarily mutually exclusive, argument is that rather 

than species diversity, it is functional diversity that is the greatest determinant of 

ecosystem processes (Hooper & Vitousek 1997; Tilman 1997). In other words, it 

is not the number of species, but the identity—and thus functional type—of the 

species present that is most influential. 
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In a global study of 116 deep-sea sites, Danovaro et al. (2008) found that deep-sea 

ecosystem functioning was exponentially linked to functional biodiversity. An 

experimental study of artificial marine systems (in perspex tanks) also showed that 

diversity effects on ecosystem function were influenced partly by species identity 

(Ieno et al. 2006). Because species identity can have a strong influence, species 

richness per se should have no direct relationship to ecological functioning in a 

community (Duarte 2000). Nevertheless, Duarte (2000) argued that high species 

richness is likely to be correlated with high functional performance due to an 

increasing probability that the functional range of species will increase with 

increasing diversity. This is illustrated by an example from seagrass communities, 

where meadows with the most seagrass species have greater structural diversity 

and the highest productivity (Duarte 2000). 

In addition, positive interactions among species may enhance their functional 

performance at a faster rate than if their individual effects were simply added 

together (Duarte 2000). These synergistic effects may partly explain the 

exponential decline in fish stocks, ecosystem stability, and water quality with 

decreasing biodiversity (Worm et al. 2006). The species redundancy hypothesis 

predicts that where multiple species are performing the same functional role 

(e.g. primary production, nutrient cycling), changes in biodiversity will not 

affect ecosystem processes, although ecosystems will be more stable (Naeem 

1998). However, Worm et al. (2006) found no evidence of species redundancy 

at high biodiversity levels, with continued enhancement of ecosystem services 

with increasing biodiversity.

 1 1 . 4  M A N A G I N G  B I O D I V e R S I T y

Because of the apparent relationship between biodiversity and ecosystem 

function, measures that protect or enhance biodiversity may also be beneficial 

for the provision of ecosystem services. Habitat and species protection improves 

the chance of sustaining a diverse flora and fauna which, in turn, provides the 

benefits of biodiversity (Dobson et al. 2006). Management of individual species 

may be particularly important in terms of ecosystem services for top predators, 

important links in the food web, species that act as ecosystem engineers, or 

species that have an obvious direct effect such as water filtration by shellfish 

(Power et al. 1996; Chapin et al. 1997; Diaz et al. 2006; Dobson et al. 2006). 

Marine reserves are one of the key tools for biodiversity protection in the 

marine environment, and have been shown to increase species richness, and 

thus biodiversity (Worm et al. 2006). Understanding the consequences of 

biodiversity changes on ecosystem functioning is becoming increasingly critical. 

Human activity is having a profound—and largely negative—influence on natural 

ecosystems in a myriad of ways, many of which have the potential to degrade the 

goods and services that humans depend on (Vitousek et al. 1997b; Daily et al. 2000; 

Giller et al. 2004). See Hooper et al. (2005) for a more comprehensive review of 

current knowledge of the effects of biodiversity on ecosystem functioning.
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 1 1 . 5  M A I N T A I N I N G  F U T U R e  O P T I O N S

Maintaining biodiversity also preserves future options for new discoveries of 

valuable biological compounds. For example, Newman et al. (2000) reported that 

more than 50% of the most-prescribed drugs in the USA are either a natural product 

(in other words, derived from a living organism) or have their synthesis or design 

based on a natural product. Approximately 62% of anti-cancer drugs in the USA 

have a natural product origin (Newman et al. 2000). In theory, marine organisms 

should offer the greatest opportunity of discovering unique compounds with 

pharmaceutical potential, because marine ecosystems include representation 

from 90% of animal phyla (Munro et al. 1999). Compounds found in a variety of 

marine organisms, including algae, corals, molluscs, sponges, and cyanobacteria, 

show promise as treatments for cancer (Newman et al. 2000; Harada et al. 2002; 

Amador et al. 2003; Takamatsu et al. 2003; Umemura et al. 2003), pain, and 

malaria (Newman et al. 2000). A New Zealand sponge species found only off the 

coast of Kaikoura shows potential as an anti-cancer therapy (Munro et al. 1999). 

Marine algae produce a wide range of chemically active metabolites, which 

have antibacterial, antialgal, antifouling, and antifungal properties (Bhadury 

& Wright 2004). These compounds are effective in preventing biofouling and 

could provide more environmentally friendly antifouling paints for ships’ hulls 

(Bhadury & Wright 2004). Terrestrial organisms including plants, bacteria, and 

soil microbes, also provide rich sources of natural products for pharmaceuticals 

(Newman et al. 2000).

 1 1 . 6  S U M M A R y

Clearly, this is a complex subject, with many remaining uncertainties. Without 

biodiversity, there would be few ecosystem services, since these services are 

largely provided by living organisms. However, there are very few data that 

quantify the links between biodiversity and the provision of ecosystem services. 

Accordingly, it is difficult to argue, on an empirical basis, that biodiversity must 

be protected because it plays a role in the provision of ecosystem services. The 

idea that ecosystem function depends on the full complement of biodiversity 

is also difficult to prove, although it is an area of considerable current interest 

and investigation. In summary, it is difficult to ascertain how biodiversity affects 

ecosystem services in New Zealand.
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 12. Conclusions

 1 2 . 1  C O N S e R V A T I O N  L A N D

Land protection is the conservation activity that has the biggest documented 

impact on ecosystem services as, almost without exception, intact, natural 

ecosystems provide the best ecosystem services. However, almost all quantitative 

data come from studies done outside New Zealand, so it is difficult to ascertain 

the extent to which they are likely to apply under New Zealand conditions. 

There are, however, several areas where the strong international evidence 

is likely to apply in New Zealand and, in some cases, is supplemented by  

New Zealand data:

Intact natural vegetation, such as forests, mangroves, wetlands and other •	

vegetation types can improve water quality.

Forests and wetlands can help to mitigate floods and droughts in some •	

situations.

Natural vegetation cover helps to preserve soil fertility and reduce erosion.•	

Seagrasses, saltmarsh vegetation, wetlands and mangroves can reduce the •	

height and force of waves and play a role in flood protection.

International research showing that forests can reduce air pollution probably 

applies in New Zealand, but the extent to which conservation land plays this role 

may be limited, given that the largest blocks of intact vegetation tend to occur far 

from the cities where pollution is produced. International research also indicates 

that natural habitat can improve pest control and pollination services in nearby 

agricultural land. However, it is uncertain whether this might also be true in  

New Zealand, given the different mix of plants and animals. 

In summary, the protection of land for conservation purposes is almost 

certainly beneficial for a range of ecosystem services, largely because it limits 

disturbance and thereby preserves the natural organisms and processes, although  

New Zealand-specific data is sparse or lacking in most areas. Table 2 summarises 

and classifies the evidence for natural habitat on conservation land providing 

ecosystem services into the following categories: consistent (where many studies 

provide consistent results), ambiguous (where many studies provide conflicting 

results), or limited (where few studies exist).

 1 2 . 2  C O N S e R V A T I O N  M A N A G e M e N T  A C T I V I T I e S 

Conservation management activities may also affect the provision of ecosystem 

services, but this this does not appear to have been widely investigated to date. 

There is a vast literature documenting the negative impacts that human-induced 

changes have had on native species and natural ecosystems, but there appear to 

be very few studies that investigate subsequent effects on ecosystem services. 

This may be largely because the field of ecosystem services is a relatively new 

area of research interest. Additionally, there are inevitable difficulties involved 

in identifying and measuring changes in ecosystem services (many of which may 
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take decades or even millennia to become evident), and in attributing causality 

to any changes measured. It is also possible that additional relevant studies do 

exist, but we were unable to find them because they did not contain the search 

words or links we used.

The few international studies that have been done suggest that, under some 

circumstances, restoring vegetation can improve water quality and water storage 

functions, and can reverse soil degradation and erosion on a local scale (Table 3). 

There is also a small body of international evidence indicating that removing certain 

invasive plant species can improve water yield and/or restore natural nutrient 

cycles, but results are variable. Researchers in New Zealand and elsewhere are 

currently investigating whether restoring seabirds to islands can restore natural 

levels of nutrient input and cycling, although studies have yet to yield results. 

The notion that biodiversity per se is fundamental for all ecosystem services is 

largely accepted as a general concept, but this field of research is in its infancy 

and considerable uncertainties remain around the mechanisms underpinning this 

complex relationship. In summary, given the scarcity of quantitative data, it is 

difficult to ascertain how conservation management activities affect ecosystem 

services in New Zealand.
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SeRVICe CONSISTeNT eVIDeNCe AMBIGUOUS eVIDeNCe LIMITeD eVIDeNCe

Air quality	 •	Forests	and	other	vegetation	

  types can reduce air pollution

Climate regulation	 • Forests	can	regulate	local	air		 • Very large forests may 

  temperature  increase rainfall

Water quality	 • Forests	and	other	vegetation	 • Riparian vegetation can 

  types can improve water quality*  improve water quality* 

	 • Wetlands	and	mangroves	can		 •	Seagrasses	can	improve	water

  improve water quality  quality

	 • Marine microbes and shellfish 

  can detoxify pollution and 

  improve water clarity*

Water quantity	 • Vegetation	affects	water	yield*	 • Forests	and	wetlands	can		 • Healthy tussock grasslands 

and timing of flow    help to mitigate floods  can maximise water yield*

    and droughts

Soil	 • Vegetation cover can reduce soil

  erosion and shallow landslides*

Crop pest control 	 • Natural vegetation can enhance

and human disease  pest control in nearby 

regulation  agricultural land† 

Pollination	 • Natural vegetation can enhance 

  pollination services in nearby 

  agricultural land†

Natural hazard	 • Seagrasses,	saltmarsh	vegetation,		 • Mangroves can provide

regulation  wetlands, and mangroves can   protection against tsunamis

  reduce wave energy and create 

  natural sea defences

Nutrient cycling	 • The presence of intact ecosystems 

  helps to retain natural nutrient 

  cycles

Fish stocks	 • Marine	reserves	can	benefit	local		 •	Marine	reserves	can	benefit	

  fish stocks inside reserves*  local fish stocks outside reserves

	 	 	 • Intact native vegetation is

    beneficial for whitebait stock

Biodiversity	 • Maintaining biodiversity preserves 

  genetic libraries and future 

  options for discoveries of 

  useful compounds 

* Includes evidence from New Zealand studies.

† New Zealand studies underway, but no data available.

TABLe 2.    SUMMARy OF eVIDeNCe SHOWING THAT eCOSySTeM SeRVICeS ARe PROVIDeD By NATURAL 

HABITAT CHARACTeRISTIC OF CONSeRVATION LAND.
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SeRVICe CONSISTeNT eVIDeNCe AMBIGUOUS eVIDeNCe LIMITeD eVIDeNCe

Air quality 

Climate regulation 

Water quality	 	 	 	 	 •	Restoring	vegetation,

      including wetland and riparian,

      can improve water quality*

Water quantity and	 •	Afforestation	can	decrease	 	 	 •	Removing	some	invasive

timing of flow  water yield*    plant species can increase

      water yield

Soil	 	 	 	 	 •	Restoring	vegetation	and/or

      removing grazing stock can

      reverse soil degradation

      and slow soil erosion*

Crop pest control

and human disease

regulation

Pollination 

Natural hazard 

regulation  

Nutrient cycling	 	 	 •	Removing	some	invasive

    plant species can restore

    natural nutrient cycles†

Fish stocks     

Biodiversity 

* Includes evidence from New Zealand studies.

† New Zealand studies underway, but no data available.

TABLe 3.    SUMMARy OF eVIDeNCe SHOWING THAT eCOSySTeM SeRVICeS ARe AFFeCTeD By CONSeRVATION 

MANAGeMeNT ACTIVITIeS.
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Does conservation assist the provision of ecosystem services?

Ecosystem services are the benefits people obtain from ecosystems, 
such as clean air, fresh water, and the pollination of crops. The aim 
of this literature review was to find empirical data illustrating the 
ways in which conservation land and conservation management 
activities affect ecosystem services. The review indicates that 
while conservation is probably beneficial for a range of ecosystem 
services in New Zealand, the scarcity of local data makes it difficult 
to ascertain where and when, and to what extent, the majority of 
those benefits transpire.
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